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1 Introduction

Spots on the solar surface have been the source of many scientific discoveries. The first systematic observations
of the Sun in the early 1600s proved the existence and variability of sunspots and dismantled the Aristotelian
worldview of the perfectness and flawlessness of the Sun (e.g. Arlt & Vaquero 2020, and references therein).
Longer time series of sunspot observations revealed that the Sun rotates differentially such that the rotation
period at the equator is about 25 days as opposed to roughly 35 days at the poles (Carrington 1863). Now
we know from helioseismology how the interior rotation rate of the Sun varies as a function of radius and
latitude; see Figure 1. Furthermore, in 1843 Heinrich Schwabe postulated that the occurrence of sunspots is
cyclic such that their number varies with a period of approximately 11 years (Schwabe 1844). The magnetic
nature of sunspots was discovered by Hale (1908) using the Zeeman effect, and the change of the magnetic
polarity from one cycle to the next by Hale et al. (1919). Sunspots appear at a low-latitude belt such that
spots appear at mid-latitudes early in the cycle and progressively closer to the equator as the cycle advances;
see Figure 2. We also know now that the cycles themselves vary on timescales of centuries and that there
have been long periods when sunspots almost completely disappeared for several decades (Usoskin 2023, and
references therein). The most famous of these events is the Maunder minimum which occurred soon after
systematic sunspot observations commenced (Maunder 1894). The current understanding is that fluid motions

Figure 1: Solar interior rotation. Adapted from Schou
et al. (1998).

inside the Sun constitute a hydromagnetic dynamo
which maintains the solar magnetic field (e.g. Os-
sendrijver 2003; Charbonneau 2020). These motions
arise because the matter in the outer parts of the Sun
is very opaque and radiation becomes inefficient. The
stratification is therefore convectively unstable and
fluid motions transfer the heat to the surface where
it is radiated into space. The interplay of these con-
vective motions on various scales with global rotation
of the Sun is thought to be the source of the differen-
tial rotation and the solar cycle (e.g. Krause & Rädler
1980; Rüdiger 1989).

Convection in the Sun and other stars is highly
turbulent and encompasses vast ranges of temporal
and spatial scales (e.g. Schumacher & Sreenivasan
2020; Jermyn et al. 2022). Analytic efforts to tackle
the problem are thwarted because of the complexity
of the flows and fields and closed-form solutions of
the equations of magnetohydrodynamics (MHD) are
in general practical only in rather simple cases. In a
statistical approach, an equation for some suitably averaged large scales (mean or effective fields) is derived, but
this equation will depend on correlations of small-scale quantities (e.g. Krause & Rädler 1980; Rüdiger 1989;
Moffatt & Dormy 2019), and an infinite chain of equations emerges that constitutes the closure problem of
turbulence (e.g. Speziale 1991). Despite decades of effort no generally applicable solution to this issue exists.

With the advent of the first generations of supercomputers in the 1970s and 80s, numerical solutions of the
governing equations became feasible (e.g. Gilman 1977; Glatzmaier 1984). Although such simulations are still
far removed from real stars, they offer a unique window into the inner workings of stellar convection zones and
dynamos. Much of the initial numerical work on convection concentrated on the global aspects of large-scale
flows and magnetic fields (e.g. Gilman & Miller 1981; Gilman 1983). However, after the encouraging first
steps the interest in such simulations waned because their results did not match with the Sun; most importantly
the magnetic fields propagated toward the poles rather than toward the equator as in the Sun. Widespread use
of global simulations became mainstream much later (e.g. Brun et al. 2004; Ghizaru et al. 2010; Käpylä et al.
2010; Brown et al. 2011). Furthermore, the scope of the simulations has broadened to stars other than the
current Sun ranging from solar-type stars of various ages (e.g. Ballot et al. 2007; Warnecke 2018; Viviani et al.
2018) to lower and higher mass stars with deeper (e.g. Dobler et al. 2006; Browning 2008; Brown et al. 2020)
or shallower (e.g. Augustson et al. 2013) convection zones, and to massive stars with convective cores (e.g.
Augustson et al. 2016).

Recent advances in helioseismology suggest that convection in the Sun is very different than in the currently
used phenomenological models or in state-of-the-art 3D simulations. More specifically, the convective velocity
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Figure 2: Longitudinally averaged solar surface magnetic field from the 1970s until the present. Courtesy of D.
Hathaway, https://solarcyclescience.com.

amplitudes at large horizontal scales appear to be much smaller than anticipated from simple theoretical models
or simulations (e.g. Hanasoge et al. 2012, 2020; Proxauf 2021). At the same time, numerical simulations are
also at odds with solar observations in that models with nominally solar luminosity and rotation rate often
produce anti-solar differential rotation (e.g. Käpylä et al. 2014). The most common interpretation of this is that
the convective velocities in simulations are higher than those in the Sun, and therefore the rotational influence
on convection is too weak. These discrepancies between solar observations and theoretical models are no
referred to as the “convective conundrum”. The cause of these differences is still under debate and this has led
to a re-evaluation the fundamentals of solar and stellar convection (e.g. Brandenburg 2016). At the same time,
numerical simulations remain the primary tool to study dynamo processes in stars.

The current dissertation covers numerical efforts to clarify several aspects of fundamental issues in the fields
of solar and stellar convection and dynamos. The numerical approach is described in Section 2, and targeted
studies of several fundamental theoretical aspects of stellar convection are presented in Section 3. Simulations
targeting solar and stellar dynamos are discussed in Section 4, whereas conclusions and future prospects are
summarized in Section 5.

2 Numerical simulations of stellar convection and their limitations

2.1 Relevant physics and equations

The standard way to model the flows and magnetic fields in stellar convection zones is to solve the equations of
magnetohydrodynamics (MHD) in whatever geometry suits the problem at hand the best. My contributions to
the field have been done with the PENCIL CODE1 (Pencil Code Collaboration et al. 2021), which is a free (li-
censed under GNU GPL 3) finite-difference solver for ordinary and partial differential equations. The PENCIL

CODE is a mature and highly flexible tool where several geometries are available for simulating convection in
stars; see Figure 3 for renderings of the velocity field from Cartesian (Paper VII), spherical wedge (Paper IV),
and star-in-a-box (Paper VI) models. The equations solved with the PENCIL CODE consist of the uncurled
induction, continuity, Navier-Stokes, and entropy equations:

∂A

∂t
= u×B − ηµ0J , (1)

D ln ρ

Dt
= −∇ · u, (2)

Du

Dt
= g − 1

ρ
(∇p+ J ×B −∇ · 2νρS)− 2Ω× u, (3)

T
Ds

Dt
= −1

ρ

[
∇ · (F rad +FSGS)− ηµ0J

2 −H+ C
]
+ 2νS2, (4)

where A is the magnetic vector potential, u is the velocity, B = ∇×A is the magnetic field, η is the magnetic
diffusivity, µ0 is the permeability of vacuum, J = µ−1

0 ∇ × B is the current density, ρ is the fluid density,

1https://pencil-code.org/
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Figure 3: Examples of Cartesian (left), spherical wedge (middle), and star-in-a-box (right) convection models
made with the PENCIL CODE (Pencil Code Collaboration et al. 2021).

g = −∇ϕ is the acceleration due to gravity, where ϕ is the gravitational potential, p is the gas pressure, ν
is the kinematic viscosity, S is the traceless rate-of-strain tensor, Ω is the rotation rate of the star, T is the
temperature, s is the specific entropy, F rad = −K∇T is the radiative flux, where K is the heat conductivity,
FSGS = −χSGSρT∇s′ is the subgrid-scale (SGS) entropy flux that acts on fluctuations entropy s′ = s−s from
a suitably averaged profile s, and H and C describe additional heating and cooling to take into account heating
due to nuclear reactions in the core of the star (e.g. Dobler et al. 2006; Brun et al. 2022, see also Paper VI) and
radiative losses near the surface. In all of the studies discussed in the present dissertation, the gas is assumed to
be fully ionised and to obey the ideal gas equation p = RρT , where R = cP − cV is the gas constant and cP
and cV are the specific heat capacities in constant pressure and volume, respectively. The choice to evolve the
magnetic vector potential A ensures the solenoidality of the magnetic field by construction.

2.2 System parameters and diagnostics

The simulations are described by a number of dimensionless system parameters and diagnostics. The system
parameters include the thermal, SGS, and magnetic Prandtl numbers

Pr =
ν

χ
, PrSGS =

ν

χSGS
, PrM =

ν

η
, (5)

where χ = K/cPρ is a reference value of the radiative diffusivity. Furthermore, the Taylor and Rayleigh
numbers describe the effects of rotation and supercriticality of convection

Ta =
4Ω2

0d
4

ν2
, Ra =

gd4

νχ

(
− 1

cP

ds

dx

)
, (6)

where g = |g|, d is the depth of the convective layer, and x ∥ −g. In cases with a fixed constant energy flux
or luminosity, such as in all of the PENCIL CODE simulations considered here, the Rayleigh number can be
expressed in terms of the energy flux Ftot as

RaF =
gd4Ftot

cPρTνχ2
. (7)

None of these parameters can be matched with the real values in the Sun and other stars in simulations: the
Prandtl numbers are practically always much too large and the Rayleigh and Taylor numbers too small in
simulations (see, e.g. Ossendrijver 2003; Kupka & Muthsam 2017; Käpylä et al. 2023). However, a number
of these parameters can be combined into a modified diffusion-free flux-based Rayleigh number (Christensen
2002; Christensen & Aubert 2006)

Ra⋆F =
RaF

Pr2Ta3/2
=

gFbot

8cPρTΩ3
0d

2
, (8)

that can be matched in simulations; see detailed discussion in Paper X and in Section 3.2.
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Figure 4: Timescales (top panel) and length scales (bottom panel) in the Sun. The shaded area shows the
accessible range in current simulations. Adapted from Käpylä et al. (2023).

Diagnostics quantities include the fluid and magnetic Reynolds numbers and the thermal and SGS Péclet
numbers

Re =
urms

νk1
, ReM =

urms

ηk1
, Pe =

urms

χk1
, PeSGS =

urms

χSGSk1
, (9)

where k1 = 2π/∆x is the wavenumber of the largest convective eddies where ∆x is the depth of the convecting
layer. In practically all simulations PrSGS ≫ Pr and therefore Pe ≫ PeSGS, meaning that the SGS entropy
diffusion is dominant in smoothing small-scale entropy fluctuations (see Appendix A of Käpylä et al. 2017).
The Reynolds and Péclet numbers are again much larger in real stars than in any current simulation (see, e.g.
Käpylä et al. 2023). The influence of rotation on the flow is characterized by the global and local Coriolis
numbers

Co =
2Ω0

urmsk1
, Coℓ =

2Ω0ℓ

urms
, (10)

which is the only diagnostics that can be captured by simulations. The former definition does not take into
account the changing scale of convection, whereas the in the latter the length scale ℓ is also a result of the
simulation; see, e.g., Aurnou et al. (2020) and Paper X.

2.3 Simulation strategy: Enhanced luminosity method (Paper III and Paper V)

Simulations of stellar convection and dynamos face a terrific numerical challenge because of the vast variety of
spatial and temporal scales in stellar convection zones (see Käpylä et al. 2023, for a recent review). Figure 4
summarizes the ranges of these scales in the Sun and the range currently accessible for global simulations. A
primary challenge is that in the general fully compressible case the timestep in the simulations is determined by
the speed of sound in the deep interior which is by far the fastest signal propagation speed. The acoustic timestep
is δtac ∝ δx/cs, where δx is the grid spacing in the simulation and cs the sound speed. In a simulation of the
full Sun this leads to a timestep that is a fraction of a second with currently typical grid resolution of around
5003 grid points (Käpylä et al. 2023). The timestep issue is typically alleviated by the use of the anelastic
approximation (e.g. Lantz & Fan 1999) where sound waves are filtered out and the timestep is determined
by the dynamical timestep δtdyn ∝ δx/u which is two to three orders of magnitude larger than δtac in the
deep convection zone. At the other end of the spectrum is the thermal relaxation or Kelvin-Helmholtz time
τKH = GM2/2RL, where G is the gravitational constant and M , R, and L are the mass, radius, and luminosity
of the star. For the whole Sun τKH ≈ 2 ·107 years. This is much longer than the affordable integration times for
numerical simulations which are typically run for tens to hundreds of years in physical time, with the longest
simulations being of the order of τsim ≈ 103 years (e.g. Passos & Charbonneau 2014). Typical anelastic
simulations assume the real stellar luminosity which means that covering τKH in such models is infeasible and
thermal relaxation is not necessarily guaranteed. There is also a computational penalty for using the anelastic
method: a global solution of a Poisson equation is required at every timestep which becomes a limiting factor
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Figure 5: Left panel: rms velocity averaged over the convection zone as a function of normalized flux Fn.
Right panel: overshooting depth dos normalized by the pressure scale height HP at the base of the convection
zone as a function of Fn from the same simulations. Adapted from Paper III.

for the scaling of such codes to very high numbers of CPUs or GPUs. Further relevant timescales that the
simulations also need to resolve include the acoustic (free-fall) time τac =

√
GM/R3, convective turnover

time τconv = ℓ/uconv where uconv is the convective velocity, and the magnetic cycle period τcyc which is 22
years for the Sun.

The PENCIL CODE simulations approach the timescale issue from a different angle and solve the fully
compressible equations where the full time dependence of density is retained. Instead of eliminating the sound
waves, the simulations use a higher luminosity (Lsim) than in real stars (L⋆) which is referred to the enhanced
luminosity method (ELM). This brings the dynamical and acoustic timescales closer to each other by increasing
the Mach number, Ma = urms/cs, of the flows. Typical luminosity enhancement ratio Lratio = Lsim/L⋆ in
simulations targeting the Sun is of the order of 106 (e.g. Käpylä et al. 2014). Assuming a balance between
advective and buoyancy forces and that convection transports all of the energy leads to a scaling uconv ∝ L

1/3
ratio;

see, e.g., Appendix A of Paper X. Therefore the convective velocity is enhanced by a factor of 102 in the
aforementioned simulation targeting the Sun. Nevertheless, in such simulations Ma ≈ 10−2 . . . 0.1 which
means that the flows are still clearly subsonic. Furthermore, τKH ∝ L−1

ratio, meaning that the Kelvin-Helmholtz
timescale can be resolved in such simulations (see, Paper IX). Another advantage is that no global Poisson
problem has to be solved and the numerical algorithm can be based on local stencils.

The scaling of convective rms velocity as a function of the normalized flux Fn(∝ Lsim) was studied in
Paper III from non-rotating hydrodynamic simulations; see the left panel of Figure 5. The scaling holds at least
in the range of parameters that are accessible to simulations currently. The enhanced velocities necessitate that
also the rotation rate Ω has to be increased with the same factor to capture the same rotational influence on the
flows as in the target star. The detailed scaling relations between simulations using ELM and physical units
were derived in Appendix A of Paper V. The tradeoff in ELM is that it is no longer the target star that is modeled
but rather an analogue with enhanced luminosity. The higher velocities in such simulations are anticipated to
lead to more mixing in the boundary layers between convectively stable and unstable layers. Earlier numerical
studies have reported steep, roughly F

1/3
n dependence of the overshooting depth (e.g. Singh et al. 1998; Tian

et al. 2009; Hotta 2017). The main result of Paper III is that eliminating dependencies on other quantities such
as the Reynolds and in particular the Prandtl number, a much shallower dependence with F 0.08

n was found; see
the right panel of Figure 5. This implies that in a simulation with Lratio = 106, convective overshooting is only
about three times deeper than in the actual star. This is a relatively mild tradeoff to balance with the benefits
of bringing the timescales substantially closer to each other. In Paper V it was shown that the differential
rotation and large-scale thermodynamic structures, such as the thermal wind balance achieved in semi-global
simulation,s were essentially unchanged when the Mach number was varied by changing Lratio.

The issues with length scales seem at first glance even more severe than those of the timescales; see the
lower panel of Figure 4. The scales at which molecular diffusion takes over are many orders of magnitude lower
than the grid scale δxsim in even the highest resolution simulations to date (Käpylä et al. 2023). For example,
the Kolmogorov scale ℓν where kinetic energy thermalizes in the solar convection zone is of the order of 10 cm
(e.g. Kupka & Muthsam 2017; Schumacher & Sreenivasan 2020). The ratio ∆R/ℓν ≈ 2 ·109, where ∆R is the
depth of the convection zone, gives an estimate of the number of grid points per direction in a direct numerical
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simulation (DNS) of the solar convection zone. The largest global simulations to date have a few thousand
grid points per direction (e.g. Hotta et al. 2022). It is highly unlikely that a DNS of the Sun would be possible
with semiconductor-based CPUs and GPUs (see the discussions in Kupka & Muthsam 2017; Käpylä et al.
2023). Furthermore, the Kolmogorov scale is much smaller than the corresponding scales for magnetic fields
(ℓη) or temperature (ℓχ), such that ℓν ≪ ℓη ≪ ℓχ, so that the corresponding Prandtl numbers Pr,PrM ≪ 1
(e.g. Schumacher & Sreenivasan 2020). While the timescale issue can be to a certain degree circumvented, no
similar remedy is available for the spatial scales. However, it is plausible that the large-scale phenomena such
as differential rotation and global magnetic fields can be captured at a much lower resolution than that of a DNS
when sufficiently many scales are included. It is not yet clear if such asymptotic regime has been reached in
simulations (e.g. Käpylä et al. 2017; Hotta et al. 2022; Guerrero et al. 2022).

3 The changing paradigm of stellar convection

The helioseismic inferences regarding the lower than expected velocity amplitudes at large horizontal scales
in the Sun are at odds with the standard models of stellar convection. In the most commonly used theoretical
descripton used in 1D stellar structure models, the mixing length theory (e.g. Vitense 1953; Böhm-Vitense
1958), the gas is considered to consists of discrete convective elements or blobs, whose size is proportional
to the local pressure scale height Hp. These convective elements are assumed to dissolve to the surrounding
medium after traveling a mixing length ℓmix = αHp, where α is a tunable parameter of the order of unity.
The theory further assumes that convection is driven locally by an unstable entropy gradient according to the
Schwarzschild criterion

∇−∇ad = −Hp

cP

ds

dx
> 0, (11)

where ∇ = ∂ lnT/∂ ln p is the logarithmic temperature gradient, and ∇ad = 1 − 1/γ is the corresponding
adiabatic gradient. Following these assumptions to their logical consequences implies that the size of convec-
tion cells increases with depth and that the largest convectively driven scale coincides with the depth of the
convective layer. For the Sun this corresponds to a scale of the order of 200 Mm which is referred to as giant
cell convection.

This is in contrast to the dominant scale of convection in the Sun which appears to be much smaller
(20 . . . 30 Mm), and coincides with that of supergranulation (e.g. Proxauf 2021); see, however, Greer et al.
(2015). Giant cells appear to be extremely weak in the Sun while they are very prominent in numerical simu-
lations of global convection (e.g. Miesch et al. 2008). Therefore premise of convection being driven locally by
an unstable entropy gradient everywhere in the convection zone has been questioned (e.g. Brandenburg 2016).
Furthermore, the mixing length theory does not take into account rotation or magnetic fields which have also
been invoked to explain the differences between observations and models (e.g. Featherstone & Hindman 2016;
Hotta et al. 2022). Finally, the system parameters of simulations, such as the Prandtl number, are often cho-
sen for their numerical convenience rather than physical accuracy. In my work I have studied each of these
possibilities with targeted simulations. These results will be reviewed in the following sections.

3.1 Non-local surface driving of convection (Paper I)

Early simulations of solar surface convection suggested that convection is highly non-local and driven by the
cooling at the surface rather than the local entropy gradient (Stein & Nordlund 1989, 1998). These ideas were
further elaborated by Spruit (1997) who envisioned plumes or filaments that traverse the whole depth of the
convection zone. Such cool entropy rain was implemented in an extended mixing length model by Brandenburg
(2016), who showed that under certain conditions most of the convection zone can be weakly stably stratified.
Numerical simulations of stellar convection have to a large extent adapted the mixing length philosophy in
that a superadiabatic temperature gradient appears throughout the convection zone. Typically this is done by
enforcing a fixed heat conductivity profile K = K(x) which is independent of the ambient thermodynamics
(see discussion in Paper I). In reality K is given by

K =
16σSBT

3

3κρ
, (12)

where σSB is the Stefan–Boltzmann constant and κ is the opacity.
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Figure 6: Left panel: Horizontally averaged energy fluxes from a simulation with a spatially fixed step profile
for K. F (0)

SGS is an SGS flux that acts on the mean entropy gradient (see discussion in Paper I), and the red curve
denotes the superadiabatic temperature gradient ∇ − ∇ad. Right panel: similar simulation but with Kramers
opacity law (solid lines) and a run with similar spatially fixed but smoothly varying K (dashed). Adapted from
Paper I.

In Paper I the assumption of spatially fixed K was relaxed in simulations of convection in Cartesian geom-
etry, and a power law was assumed for the opacity

κ = κ0

(
ρ

ρ0

)a( T

T0

)b

, which leads to K = K0

(
ρ

ρ0

)−(a+1)( T

T0

)3−b

, (13)

where ρ0 and T0 are reference values for density and temperature, and where K0 subsumes the constants κ0
and σSB. The choice a = 1, b = 7/2 corresponds to Kramers opacity law which approximates the opacity
in, for example, the solar convection zone (e.g. Weiss et al. 2004). The advantage of the Kramers opacity is
that because of its analytic form, it is very easy to implement in a numerical model. Although some early
studies used Kramers conductivity in simulations (Edwards 1990; Brandenburg et al. 2000), its use is still not
widespread. The novelty of the Kramers opacity lies in that changes in the ambient thermodynamic state are
immediately taken into account and the effects of additional physics such as magnetism and rotation are thus
indirectly imprinted in the heat conductivity. Furthermore, the heat conductivity profile connects radiative and
convective layers smoothly allowing a more natural boundary between these zones.

In simulations with a step profile of heat conductivity, the convection zone depth is fixed from the outset;
see the left panel of Figure 6. In such setups the convective enthalpy flux F enth = cP(ρuz)′T ′ is outward only
if ∇−∇ad > 0. We can identify the buoyancy zone (BZ) where F enth > 0 and ∇−∇ad > 0, an overshoot
zone (OZ) where F enth < 0 and ∇−∇ad < 0, and a radiative zone (RZ) where F enth ≈ 0 and ∇−∇ad < 0.
On the other hand, in cases where the radiative and convective regions connect smoothly, such as with the
Kramers opacity or a similar fixed but smoothly varying profile, the lower convection zone is formally stably
stratified; see the right panel of Figure 6. Therefore a new layer, the Deardorff zone (DZ), appears which is
absent in canonical models of convection, and where F enth > 0 and ∇−∇ad < 0. These results suggest that
the deep parts of the solar convection zone can be stably stratified. However, the Deardorff zone in these and
other similar simulations (e.g. Tremblay et al. 2015; Hotta 2017) is still a relatively shallow compared to the
total depth of the convectively mixed layer, and the power spectrum of convective velocity still peaks at the
largest horizontal scales (see, e.g., Paper VII).

Although insufficient to solve the convective conundrum, these results have repercussions in mean-field
theory of hydrodynamics. The Schwarzschild criterion is often imprinted here as well, such that the suitably
averaged net convective enthalpy flux is parameterized by a gradient diffusion term (e.g. Rüdiger 1989)

F
(MF)
enth = −χtρT∇s ≡ FG, (14)

where χt is a turbulent thermal diffusivity. The importance of non-local effects was realized in the atmo-
spheric physics community already in the 1960s where a corresponding non-gradient term was included in the
expression of the enthalpy flux (Deardorff 1961, 1966) with

F
(MF)
enth = −χtρT∇s+ τrelρT s′2g/cP ≡ FG + FD, (15)

where τrel is a relaxation time, and where the latter Deardorff flux FD is positive irrespective of the sign of the
entropy gradient. In stars such as the Sun the latter term is thought to arise because convection is driven by
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the cooling at the surface leading to highly non-local downflow plumes that can penetrate the entire convection
zone. This is illustrated in Figure 7 which shows the total force fz = ρDuz/Dt on upflows and downflows

Figure 7: Horizontally averaged forces (fz) on upflows (red)
and downflows (blue) from a Kramers convection simulation.
The dashed lines show the corresponding power. Adapted
from Paper III.

for a simulation similar to that in the right panel
of Figure 6. The downflows are accelerated
downward near the surface where fz < 0, and
they are decelerated in the Schwarzschild stable
Deardorff (DZ) and overshoot zones (OZ). The
apparent adherence of the forces on the down-
flows to the Schwarzschild criterion is partly
a coincidence and in other similar simulations
this is less apparent (see, e.g., Fig. 21 of Pa-
per VII and Fig. 12 of Paper X). On the other
hand, the upflows are accelerated upward ev-
erywhere except near the surface. Such upward
acceleration cannot be because of the convec-
tive instability in the stably stratified OZ and
DZ regions. It is rather the result of the deeply
penetrating downflows that displace the matter
in the deep parts and drive upflows by pressure
forces. The fact that also the upflows appear to
be driven by a secondary effect of surface-originating plumes is a clean break from the canonical picture of
convection where the driving is done everywhere locally by a negative entropy gradient.

3.2 Rotational constraint in the deep solar convection zone (Paper X)

As mentioned above, mixing length theory does not take into account dynamical effects such as rotation or mag-
netic fields. In Paper X the effects of rotation on convection were probed with hydrodynamic 3D simulations
in Cartesian geometry. Rotation has a significant impact on the excitation conditions of convection in the linear
regime (e.g. Chandrasekhar 1961; Roberts 1968). This includes a shift of the most unstable mode to higher
wavenumbers or smaller spatial scales. Such effects are expected to be carried over to nonlinear dynamics of
convection if the Coriolis number

Co =
2Ω0

uconvk1
, (16)

is sufficiently large. This is encapsulated in a generalized rotating mixing length theory (e.g. Stevenson
1979; Barker et al. 2014; Aurnou et al. 2020), where a balance between Coriolis, inertial, and buoyancy
(Archimedean) forces is assumed (CIA balance). This theory predicts that the dominant length scale of con-
vection scales as

ℓ ∝ Co−1/2, (17)

for Co ≳ 1 (e.g. Vasil et al. 2021, Paper X). Using the velocity and length scales from mixing length theory, Co
is expected to exceed unity around r = 0.95R⊙ and reach values of the order of ten near the base of the solar
convection zone (e.g. Käpylä et al. 2005; Schumacher & Sreenivasan 2020). Therefore the dominant convective
scale should be affected in much of the solar convection zone.

This idea was picked up by Featherstone & Hindman (2016) and Vasil et al. (2021), who argued that
deep convection in the Sun is sufficiently strongly rotationally constrained that the dominant convective scale
coincides with the scale of supergranulation. Using global 3D numerical simulations of rotating convection,
Featherstone & Hindman (2016) showed that such situation is obtained when Co ≈ 17 (see detailed discus-
sion in Paper X). There is currently no observational technique to ascertain this and therefore we do not have
empirical data for ℓ or u in the deep solar convection zone. It is furthermore unclear whether the simulation
parameters of Featherstone & Hindman (2016) correspond to the Sun. This was clarified in Paper X, where
a new Coriolis number independent of any dynamical length scale or velocity was introduced. This quantity
turns out to be a system parameter that must be matched with the target star, e.g., the Sun in this case. We call
this the flux Coriolis number, and it is given by

CoF = 2ΩH

(
ρ⋆
Ftot

)1/3

, (18)
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Figure 8: Normalized power spectra of velocity ẼK(k) = EK(k)/
∫
EK(k)dk at three depths within the

convection zone for a set of runs where Co varies between 0 and 16.5. The inset in the left panel shows the
mean (k̃mean = kmean/kH) and maximum (k̃max = kmax/kH) wavenumbers as functions of Co for z/d = 0.85.
The grey dashed line shows a power law proportional to Co1/2. Adapted from Paper X.

where H is a length scale, ρ⋆ is a reference density, and Ftot is the total energy flux emanating from the radiative
core. Furthermore, with a suitable choice of the length scale H , CoF can be written as

CoF = (Ra⋆F)
−1/3, where Ra⋆F =

Fbot

8ρ⋆Ω3H3
, (19)

is the modified diffusion-free flux-based Rayleigh number (Christensen 2002; Christensen & Aubert 2006).
Choosing H = Hp, where Hp is the pressure scale height at the base of the convection zone, all of the
quantities in Eq. (18) are known from either from direct observations (Fbot, Ω) or from solar interior models
(ρ⋆, Hp). Therefore it is possible to construct simulations where the forcings due to luminosity and rotation
match precisely those of the Sun.

Figure 9: Coℓ as a function of Co along with theoretical scal-
ings for slow and rapid rotation. The inset shows Coℓ as
a function of Ra⋆F with corresponding theoretical scalings.
Adapted from Paper X.

Before discussing the solar case in detail,
the overall results from Paper X regarding rota-
tional scaling are shown in Figs. 8 and 9. The
convective scale is estimated from the power
spectrum of the velocity field EK(k) for which
u2 =

∫
EK(k)dk. The convective scale was

determined either by considering the wavenum-
ber k = kmax where the EK has its maximum,
or by taking the mean wavenumber kmean =∫
kEK(k)dk/

∫
EK(k)dk. Figure 8 shows that

for slow rotation (Co ≲ 1) the convective scale
is almost unaffected by rotation, whereas for
sufficiently rapid rotation (Co ≳ 3) the scal-
ing proportional to Co1/2 is obtained in accor-
dance with the CIA balance. Similarly the rela-
tion between Coℓ and Co is linear until around
Co = 1 and approaches Coℓ ∝ Co1/2 for the
most rapidly rotating cases; see Figure 9. Furthermore, the scaling of Coℓ as a function of Ra⋆F changes from
(Ra⋆F)

−1/3 for slow rotation to (Ra⋆F)
−1/5 for rapid rotation. All of these results are in accordance with the

scalings derived under the CIA balance (Stevenson 1979; Barker et al. 2014; Aurnou et al. 2020, Paper X).
In Paper X it was shown that in the Sun the flux Coriolis number is Co⊙F ≈ 3.14 using values of the density

and pressure scale height from the base of the convection zone. The relation between Co and CoF is given by

Co =
u⋆
u

CoF
k1Hp

, (20)

where u⋆ = (Fbot/ρ⋆)
1/3 is a reference velocity that measures the available flux. For the simulations in

Paper X, Co ≈ 0.87 for Co⊙F . Inspection of Figure 8 reveals that the convective scale is almost unchanged from
the non-rotating case for this Coriolis number. A more detailed calculation involving a scaling back to physical

11
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units gives estimates ℓmax ≈ 135 Mm and ℓmean ≈ 58 Mm from the maximum and mean wavenumbers,
respectively. Both estimates clearly exceed the supergranular scale of 20 . . . 30 Mm in the Sun. Furthermore,
the simulations of Featherstone & Hindman (2016) that yielded the ℓmax ≈ 25 Mm with Co ≈ 17 were shown
to have a rotation rate corresponding to at least 15Ω⊙. These results suggest that rotationally constrained
convection cannot explain the low velocity amplitudes at large scales in the Sun.

3.3 Effect of Prandtl number

As discussed in Section 2.2, current or any foreseeable numerical simulations are unable to reach realistic pa-
rameter regimes relevant for stellar interiors. This raises questions regarding the applicability of the simulation
results to astrophysical conditions. One such issue is that in the Sun and in most stellar convection zones the
thermal Prandtl number is Pr ≪ 1 (e.g Augustson et al. 2019; Jermyn et al. 2022), whereas numerical sim-
ulations are restricted to values close to Pr = 1. A concrete effect of this was discovered in Paper III where
overshooting below the convection zone was found to be sensitive to the Prandtl number. More specifically,
the steep dependence of overshooting depth as a function of luminosity found in earlier studies was shown to
be explained largely by the variation of the Prandtl number; see Section 2.3. Prandtl number dependence has
also been suggested as a solution to the convective conundrum. However, this has been approached from the
perspective that the effective (turbulent) Prandtl number in the Sun is greater than unity. Numerical simula-
tions indeed suggest that increasing the Prandtl number leads to a reduction of the overall velocity amplitudes
(O’Mara et al. 2016; Bekki et al. 2017; Karak et al. 2018; Orvedahl et al. 2018), but there is also evidence
that it becomes harder to maintain a solar-like rotation profile in such simulations despite the lower velocities
(Karak et al. 2018). Finally, earlier analytic (Spiegel 1962) and numerical (e.g. Cattaneo et al. 1991; Breuer
et al. 2004; Pandey et al. 2021) work has shown that convection in the regime Pr ≪ 1 is qualitatively different
from the Pr = 1 case. More specifically, convection becomes highly inertial and coherent large-scale structures
are intensified, along with a redistribution of the convective flux between the upflows and downflows. These
considerations led to two studies where I studied the energy transport and flow structure in Cartesian geometry
(Paper VII) and the effects Prandtl number on differential rotation in semi-global simulations (Paper IX).

3.3.1 Convective energy transport and flow structure (Paper VII)

The dependence of convective energy transport on the Prandtl number is illustrated in the left panel of Figure 10,
where the convected flux (Cattaneo et al. 1991) according to

F conv = F enth + F kin, (21)

where F kin = 1
2ρu

2uz is the kinetic energy flux, along with F enth and F kin are shown from simulations
PrSGS ranging between 0.1 and 10 (Paper VII). The simulation setup was chosen such that the SGS diffusivity
is dominant in smoothing the small-scale entropy fluctuations, i.e., Pr ≫ PrSGS. Furthermore, the SGS
diffusivity acts only on the fluctuations of entropy and does not therefore directly contribute to the net energy
transport. This means that the driving of convection, either by surface cooling or an unstable entropy gradient
is nearly unaffected when PrSGS is varied. This is manifested by the practically identical F conv within the
convection zone as a function of PrSGS. However, the mean enthalpy and kinetic energy fluxes are sensitive to
the Prandtl number: the absolute magnitudes of both F enth and F kin increase with decreasing PrSGS. Because
they have opposite signs, a larger convective velocities are needed to transport the same flux for lower PrSGS.

A striking effect of the changing convective velocities is that overshooting below the convection zone is
highly sensitive to the Prandtl number. The region of overshoot with F conv < 0 below about z/d = 0.1 be-
comes progressively deeper with decreasing PrSGS. This is shown in more detail in the right panel of Figure 10
which shows the overshooting depth dos measured from the kinetic energy flux as a function of Preff2 and Pe
(see Paper VII for detailed definition of overshooting the depth). There is a monotonic increase of dos with de-
creasing Preff , although when the Péclet number is increased this trend is somewhat weaker. This nevertheless
raises the question of the nature of convective overshooting in, for example, in the Sun where Pr ≈ 10−6 in
comparison to current numerical work with Pr ≈ 1.

Another important finding in Paper VII is related to the filling factor f of downflows. The relevance
of f is that it traces the asymmetry between upflows and downflows which is the principal reason for the

2Preff = ν/(χ + χSGS), where χ is a reference value from z/d = 0.85. In practice Preff ≈ PrSGS in the bulk of the convection
zone, see Table 1 of Paper VII.
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Figure 10: Left panel: Horizontally averaged convected flux according to Eq. (21), along with convective
enthalpy (F enth) and kinetic energy fluxes (F kin), as functions of the SGS Prandtl number. Right panel: Over-
shooting depth dos as a function of the effective Prandtl number Preff . Adapted from Paper VII.

Figure 11: Filling factor of downflows f as a function of
depth for representative values of PrSGS with Re ≈ 79 . . . 94.
Adapted from Paper VII.

appearance of the Deardorff zone (see detailed
discussion in Paper X). Furthermore, a very
small filling factor (as low as 10−4) is typically
assumed in semi-analytic models of convection
that produce Deardorff layers; see, for example,
Rempel (2004) and Brandenburg (2016). The
results of Paper VII indicate that the filling fac-
tor is sensitive to PrSGS such that f decreases
with PrSGS; see Figure 11. This can be inter-
preted such that fewer but stronger downflows
are present when the Prandtl number decreases.
However, even the lowest local values obtained
in these simulations are of the order of 0.25
which is several orders of magnitude larger than
the values adopted in the semi-analytic mod-
els mentioned above. On the other hand, the
Prandtl number is still five orders of magnitude larger in the simulations than in the deep convection zone
of the Sun. Therefore the results of Paper VII hint at the intriguing possibility that convection in the Sun is
qualitatively different from what the current simulations suggests.

3.3.2 Effects on the differential rotation in semi-global models (Paper IX)

In Paper IX the starting point is opposite to the premise in several recent studies where a high effective Prandtl
number was assumed for the Sun (e.g. Bekki et al. 2017; Karak et al. 2018). There is no conclusive evidence
of this (see, e.g. Käpylä & Singh 2022), and the microscopic Prandtl number in the solar and stellar convection
zones is Pr ≪ 1. Furthermore, the results of Prandtl number sensitivity from earlier studies using Cartesian
simulations (Paper III, Paper VII) suggest that the Prandtl number is likely to have an impact also for global
properties of convection.

The main question studied in Paper IX is whether the Prandtl number plays a role in the transition from
anti-solar to solar-like differential rotation in semi-global wedge simulations. These models were done with
and without dynamo-generated magnetic fields to probe also the influence of magnetic fields on this transition.
The main diagnostic used in this study is the mean differential rotation at the equator:

⟨∆Ω̃eq⟩ =
∫ R
rin

r2[Ω̃(r, θeq)− 1]dr∫ R
rin

r2dr
, (22)

where θeq = π/2, Ω = Ω0 + uϕ/r sin θ, and the tildes indicate normalization by the rotation rate of the
frame of reference, Ω0. Given that ⟨∆Ω̃eq⟩ > 0 the simulation is classified as a solar-like rotator. This is a
rather simplistic criterion but it has the advantage that it is free from complications caused by, e.g., equatorial
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Figure 12: Measure of radial differential rotation ⟨∆Ω̃eq⟩ at the equator of the star as a function of Co (left
panel) and Co⋆ (right panel). Crosses (circles) denote hydrodynamic (MHD) runs. The colours indicate the
SGS Prandtl number as indicated in the left panel and the size of the symbol corresponds to Re (ReM) for
hydrodynamic (MHD) cases. Adapted from Paper IX.

asymmetries in the rotation profile. A more sophisticated classification scheme including also the latitudinal
differential rotation was introduced in Camisassa & Featherstone (2022).

Results from several sets of simulations from Paper IX with PrSGS varying between 0.1 and 10 are shown in
Figure 12. The left panel shows that solar-like differential rotation is achieved at a lower Co for lower PrSGS as
a general trend. Furthermore, the solar-like regime is reached at even lower Co in runs with dynamo-generated
magnetic fields. A similar trend was seen with higher resolution simulations that are characterized by higher
values of Re and ReM and more turbulent flows and magnetic fields. The trend as a function of PrSGS agrees
with the hydrodynamic simulations of Karak et al. (2018) who found that it is more difficult to obtain solar-
like rotation profiles at high Prandtl numbers. However, Co as a measure of rotational influence relies on the
convective velocity which is not known a priori. In Paper IX another form of the flux Coriolis number was
used:

Co⋆ =
2Ω0R

u⋆
= 2ΩR5/3

( ρ

L

)1/3
= (4π)−1/3

(
R

rin

)2 R

H
CoF, (23)

where rin = 0.7R is the radius of the base of the convection zone, and R is the radius of the star. In Paper IX,
Co⋆ = 0.5 corresponds to a star with solar luminosity and rotation rate. When the results are recast in terms
of Co⋆, the trend as a function of the Prandtl number is weaker; see the right panel of Figure 12. While it is
still clear that in the case with PrSGS = 10 a solar-like differential rotation is more difficult to achieve, the
differences between the PrSGS = 1 and PrSGS = 0.1 cases vanish. In this representation the roles of higher
Reynolds numbers and magnetic fields are more pronounced. Small-scale magnetic fields have been suggested
to be the primary cause for solar-like differential rotation with solar CoF in high-resolution implicit Large-Eddy
Simulations by Hotta & Kusano (2021) and Hotta et al. (2022). In the current cases a non-negligible effect of
the magnetic field is observed, but the results do not change dramatically even when a small-scale dynamo
is present. Therefore the effect of small-scale magnetic fields appears to be significantly weaker than in the
simulations of Hotta et al. (2022).

Large-scale differential rotation in the Sun is thought to result in from turbulent angular momentum fluxes
due to the convective motions. In mean-field hydrodynamics the angular momentum transport is represented
by the turbulent Reynolds stress Qij = ρu′iu

′
j , where u′ = u − u is the velocity fluctuation and the overbar

denotes suitable (now azimuthal) averaging (e.g. Rüdiger 1989; Kitchatinov & Rüdiger 1995; Kitchatinov &
Rüdiger 2005). These theories adopt simple models for the turbulence to keep the analytics manageable and
the detailed structure of flows producing such spectra is not addressed. On the other hand, rotating fluids
support a rich variety waves, known as Rossby waves (e.g. Zaqarashvili et al. 2021; Gizon et al. 2021). One
particular variant is the thermal Rossby wave which often manifests itself at the equatorial regions of rotating
convecting spheres near the onset of convection (e.g. Hindman & Jain 2022). The Reynolds stresses and the
resulting differential rotation from such waves was first studied by Busse in the early 1970s (Busse 1970b,a),
and the columnar convective structures are therefore named Busse columns. Such convective modes are very
prominent also in non-linear global numerical simulations (e.g. Miesch et al. 2008, see also Paper IV and the
middle panel on Figure 3). In Paper IX the spatial scales of the Reynolds stress was studied using data in the
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Figure 13: Left panel: Contributions from low-order azimuthal modes to the radial Reynolds stress Q̃
u

rϕ at the

equator of the star. Right panel: Instantaneous velocity field (arrows) and radial angular momentum flux Q̃
u

rϕ

(colour contours) from a simulation with solar-like differential rotation. Adapted from Paper IX.

equatorial plane of the star as a function of the azimuthal modes m′. A representative result is shown in the left
panel of Figure 13. If only the two first modes m′ = 1, 2 are retained the resulting radial Reynolds stress Q̃

u

rϕ

(∝ Qrϕ) is mostly negative. However, the m′ = 3 . . . 5 modes yield a positive Q̃
u

rϕ, and the combined stress
from modes (m′

1,m
′
2) = (1, 5) is almost the same as the total stress where in this particular case m′

max = 72.

The conclusion is that the positive Q̃
u

rϕ that is needed to drive solar-like differential rotation comes almost
solely from relatively large-scale structures that can be identified as the Busse columns; see the right panel of
Figure 13. In Paper IX this conclusion remains the same also in the cases where both large-scale and small-scale
dynamos are excited. Similar large-scale structures are also visible in the high-resolution simulations of Hotta
et al. (2022) even though in their simulations the effect of the magnetic field on the differential rotation was
more pronounced. The dominance of such large-scale structures in simulations in comparison to them being
apparently very weak in the Sun remains puzzling.

4 Solar and stellar dynamos

In astrophysics the main interest to simulate convection is connected to the generation of large-scale magnetic
fields in stars and planets such at the Sun and the Earth. As discussed above, the details of stellar convection
appear to be less well understood than previously thought. The changing paradigm of stellar convection has
wider repercussions for dynamos in stars of different ages and masses such that the plausibility of different
dynamo mechanisms need to be re-evaluated. The solar case is especially intriguing because the Sun appears to
be near a transition from solar-like to anti-solar differential rotation which is likely to have major implications
for its dynamo (e.g. van Saders et al. 2016; Metcalfe et al. 2016). It may well be that modeling the solar
dynamo is particularly difficult because of its proximity to the differential rotation transition (Käpylä et al.
2023). Although this transition is typically not captured at the correct Coriolis number in simulations (e.g.,
Paper II), it is nevertheless still possible to study the rotational evolution of dynamo solutions in stars bearing
this offset in mind. A similar argument applies to stars of different masses and depths of convection zones
and to comparisons with observations. The topics covered here include rotational evolution of dynamos and
dynamo cycles in solar-like stars (Paper II, Paper VIII), dynamos in fully convective stars (Paper VI), and the
effects of subadiabatic layers on large-scale differential rotation and dynamos (Paper IV).

4.1 Dynamos in solar-type stars as a function of rotation (Paper II, Paper VIII)

An important question in the study stellar magnetism is the evolution of the dynamos as a function of time.
While the other stellar parameters do not change appreciably during the main-sequence lifetime of late-type
stars, the rotation of stars gradually slows down because of the coupling of the stellar magnetic fields with
the surrounding interstellar medium (e.g Skumanich 1972; Barnes 2003). Abundant observational evidence
indicates that stellar magnetism intensifies as a function of rotation and that for sufficiently rapid rotation the
activity plateaus (e.g. Wright et al. 2011, 2018; Reiners et al. 2022). Rotation is a crucially important ingredient
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Figure 14: Left: Time-latitude diagram of the longitudinally averaged azimuthal field Bϕ from a simulation of
a slowly rotating solar-like star with anti-solar differential rotation. Adapted from Käpylä et al. (2017). Right:
Azimuthally averaged radial magnetic field Br near the surface of the star in a star-in-a-box simulation of a
solar-like star. Adapted from Paper VIII.

in stellar dynamos because it is related to both generation of differential rotation and magnetism via its effects
on the statistics of turbulent flows driven by convection (e.g. Krause & Rädler 1980; Rüdiger 1989; Moffatt
& Dormy 2019). Thus the study of convective dynamos as a function of rotation is necessary to develop a
stellar dynamo theory. The solar dynamo must fit into this larger picture and therefore studies of the Sun
should be done as a part of a more general effort adn not in isolation. Furthermore, observations of the field
topologies and cycles of the Sun and other stars provide constraints to the theoretical models and simulations.
The solar cyclic dynamo is the most well-documented case, but there are many other stars where cycles have
been observed from long-term surveys of magnetically active spectral lines such as Ca II H&K (e.g. Baliunas
et al. 1995; Saar & Brandenburg 1999; Olspert et al. 2018). Whereas the solar large-scale magnetic field is
predominantly axisymmetric, mean-field models based on classical mean-field dynamo theory suggest that at
sufficiently rapid rotation the large-scale magnetic fields become increasingly non-axisymmetric (e.g. Moss &
Brandenburg 1995). Such magnetic field configurations have been reported from Zeeman-Doppler Imaging
of rapidly rotating late-type stars (e.g. Kochukhov et al. 2013) and hints of a transition from predominantly
axisymmetric to non-axisymmetric fields have been reported from photometric studies (e.g. Lehtinen et al.
2016).

Figure 15: Ratio of the rotation period (Prot) to cycle pe-
riod (Pcyc) as a function of Co from simulations of stellar
dynamos. Data from Paper VIII (b;ack and grey), Strugarek
et al. (2018) (blue), Warnecke (2018) (red), and Guerrero
et al. (2019) (brown) are shown. Adapted from Paper VIII.

While earlier studies had covered limited
ranges of a few values in rotation rate (e.g.
Brown et al. 2011; Käpylä et al. 2013, 2017),
a comprehensive study was undertaken in Pa-
per II, where spherical wedge simulations cov-
ering the full 2π longitude range were used, and
where the Coriolis number was varied between
1.4 and 126, corresponding to physical rotation
rates Ω⊙ . . . 31Ω⊙ (Prot ≈ 30 . . . 1 day). These
simulations show that when rotation is slow
enough such that anti-solar differential rotation
develops, the resulting large-scale dynamos are
predominantly axisymmetric and quasi-static;
see a representative example from Käpylä et al.
(2017) in the left panel of Figure 14; (see also,
e.g. Strugarek et al. 2018; Warnecke 2018). At
somewhat more rapid rotation, a solar-like dif-
ferential rotation is achieved with a correspond-
ing change in the dynamo mode. The large-
scale fields continue to be predominantly axisymmetric but now they exhibit cycles. There is considerable
debate whether observed stellar cycles show systematic trends – or activity branches – as a function of rotation;
see discussions in Brandenburg et al. (2017), Olspert et al. (2018), Boro Saikia et al. (2018), and Irving et al.
(2023) with different authors coming to contradicting conclusions using partially the same data but different
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Figure 16: Left panel: relative energies of the axisymmetric (m = 0, blue circles), and the first non-
axisymmetric (m = 1, red circles) modes as a function of Co. The filled circles denote results from high
resolution runs. Right panel: Mollweide projection of the radial surface magnetic field Br from a simulation of
a solar-like star rotating at Ω0 = 5Ω⊙. Adapted from Paper II.

methods. A similarly complex situation is encountered with simulations results; see Figure 15 where a com-
monly used diagnostic Prot/Pcyc is shown as a function of Co from various numerical studies. The activity
branches advocated by Brandenburg et al. (2017) have Prot/Pcyc ∝ Coβ where β > 0 whereas most numerical
studies yield β ≈ −1. The simulations in Paper VIII are currently the only ones where β ≈ 0 or even somewhat
positive systematically over a limited range of Co. The reasons for such heterogeneous behavior are as of yet
unclear and require more concentrated efforts to distinguish the dominant dynamo effects, e.g., via detailed
mean-field modelling (e.g. Warnecke et al. 2021).

In many of the early simulations the cycles showed poleward propagation in contradiction to the Sun (e.g.
Gilman 1983; Glatzmaier 1985; Käpylä et al. 2010; Brown et al. 2011). As explained in Section 1, reproducing
the solar equatorward migrating pattern of activity remains challenging for the current simulations. Neverthe-
less, such solutions have been obtained by many research groups and a wide variety of numerical approaches
(e.g. Käpylä et al. 2012; Augustson et al. 2015; Duarte et al. 2016; Matilsky & Toomre 2020); see a recent
example from star-in-a-box models from Paper VIII in the right panel of Figure 14. However, it is questionable
whether any of these simulations captures the actual dynamo process in the Sun. As shown in Warnecke et al.
(2014) and Warnecke et al. (2018), the equatorward propagation in most of these simulations is very likely
caused by a feature in the differential rotation profile that does not appear in the Sun. Another aspect regarding
cycles is that the dynamo solutions are sensitive to the boundary conditions used in the simulations; see War-
necke et al. (2016) and Paper VIII. In the latter study the star-in-a-box model was used and there is no explicit
boundary condition at the surface of the star. However, by varying the magnetic diffusivity in the exterior of
the star, the boundary condition is effectively changed. In particular, if the resistivity in the exterior is increased
the cyclic solutions give way to a quasi-static mode. The greater freedom of the magnetic field near the stellar
surface in the star-in-a-box simulations may also contribute to the qualitatively different behavior of the cycles
in these simulations in comparison to other numerical studies; see Figure 15.

The results of Paper II suggest that the window in which cyclic solutions appear is rather narrow (see also
Strugarek et al. 2018; Brun et al. 2022). Furthermore, the large-scale magnetic fields become increasingly
dominated by low order non-axisymmetric modes for more rapid rotation. This is illustrated in the left panel
of Figure 16 where the energy fraction contained in the axisymmetric (m = 0) and the first non-axisymmetric
modes (m = 1) with respect to the total magnetic energy are shown. The transition to non-axisymmetrically
dominated dynamos occurs around Co = 3 which correspond to Ω ≈ 1.8Ω⊙. In these simulations this also
coincides with the transition from anti-solar to solar-like differential rotation whereas observational studies
(e.g. Lehtinen et al. 2016) put the transition to non-axisymmetric fields at more rapid rotation. This suggests
that the simulations capture qualitatively correct behavior. At sufficiently rapid rotation the large-scale non-
axisymmetric fields are strong enough so that they are immediately apparent in maps of the magnetic field;
see the right panel of Figure 16. Another interesting feature is that these non-axisymmetric structures drift
in longitude. Such azimuthal dynamo waves were reported from linear mean-field dynamo models already
by Rädler (1980) and Krause & Rädler (1980), and they can be understood as analogues of the latitudinal
dynamo waves such as those observed in the Sun. A hallmark of these waves is that they propagate like rigid
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Figure 17: Top row: Time-latitude diagrams of the azimuthally averaged toroidal magnetic field Bϕ near the
surface of a fully convective 0.2M⊙ star with slow (Prot = 430 days; left) and intermediate (Prot = 43 days;
right) rotation rates. The two lower rows show the radial magnetic field near the surface of a rapidly rotating
star with Prot = 4.3 days at six epochs facing the pole (middle row) and the equator (lower row). Adapted from
Paper VI.

bodies independently of the fluid velocity (e.g. Cole et al. 2014; Viviani & Käpylä 2021; Navarrete et al. 2023,
Paper II). There is also observational evidence that the rotation periods of magnetic features differ from those of
the actual stellar rotation which can be interpreted as the presence of azimuthal dynamo waves (Lehtinen et al.
2016). Spot tracking is often used to measure differential rotation in stars other than the Sun. The existence of
azimuthal dynamo waves, that can be prograde or retrograde (e.g. Navarrete et al. 2023), makes such methods
potentially highly unreliable, even to the extent that the overall sense of the inferred differential rotation may
be incorrect.

4.2 Dynamos in fully convective stars as a function of rotation (Paper VI)

The solar interior rotation profile Figure 1 shows relatively little radial shear within the convection zone while
regions of strong radial shear are present in the boundary layers at the base and near the surface. The lower
shear layer, which is known as the tachocline, plays a very prominent role in a class of solar dynamo models
known as flux-transport dynamos (e.g. Dikpati & Charbonneau 1999). In this model the poloidal magnetic fields
are amplified by the strong shear below the convection zone to strengths in excess of 100 kG before erupting
to the surface (e.g. Schüssler et al. 1994). This is in contrast to the distributed turbulent dynamos where the
magnetic fields are thought to be amplified throughout the convection zone due to the interaction of rotation and
convection (e.g. Parker 1955; Steenbeck et al. 1966). On the other hand, late-type M stars with masses below
about 0.35M⊙ are thought to be fully convective (e.g. Chabrier & Baraffe 1997) such that no tachocline can
exist. Based on the flux transport dynamo paradigm, it has been postulated that dynamos in fully convective
stars have to be driven by some completely different mechanism than in their partially convecting higher mass
counterparts. Yet fully convective M dwarfs also exhibit vigorous global-scale magnetism (Kochukhov 2021)
and X-ray emission that is in line with partially convective stars (e.g. Wright et al. 2018). Therefore fully
convective stars are very important in the general picture of stellar magnetism and dynamos in that they can be
used to narrow down the spectrum of plausible stellar dynamo scenarios.

Prior numerical works have concentrated on magnetic field generation in fully convective stars in isolated
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Figure 18: Left: Time-averaged radial component of the enthalpy flux Lenth
r (colour contours) and the vectorial

enthalpy flux (arrows) in the meridional plane of a solar-like star with Ω = 3Ω⊙. The solid, dashed, and
dash-dotted lines indicate the bottoms of the buoyancy, Deardorff, and overshoot zones. Right: Time-latitude
diagram of the mean azimuthal magnetic field Bϕ(t, θ) from the same simulation. Adapted from Paper IV.

case studies without systematic efforts to probe the rotation dependence of dynamos (e.g. Dobler et al. 2006;
Browning 2008; Yadav et al. 2015b; Brown et al. 2020). A systematic study of this kind was undertaken
in Paper VI, targeting a 0.2M⊙ fully convective star with star-in-a-box models with the rotation period Prot

varying between 4.3 and 430 days. The results for the large-scale dynamos are summarized in Figure 17.
The similarity to partially convective stars is striking: slowly rotating simulations show anti-solar differential
rotation with predominantly axisymmetric quasi-static dynamos, while at somewhat faster rotation solar-like
rotation profile and cyclic solutions appear. Increasing the rotation rate further leads to non-axisymmetric fields
that exhibit azimuthal dynamo waves. Taken at face value, the results of Paper VI suggest that dynamos in fully
convective stars are driven by the same process as in more massive partially convecting stars. This conjecture
comes with the caveat that it is yet to be clarified whether the simulations in either case capture the correct
stellar dynamo processes.

The current spherical wedge and star-in-a-box simulations have not yielded any dipole-dominated dynamos
in the rapid rotation regime, unlike some other numerical studies (e.g. Yadav et al. 2015a; Zaire et al. 2022).
It is unclear why such solutions do not appear, but a possibility is that the missing polar caps in spherical
wedges and/or the additional conducting exterior in the star-in-a-box simulations is the cause. The dependence
of dynamo solutions to boundary conditions has already been mentioned earlier and this is another possibility.
Therefore more effort in the future needs to be made to set up benchmarks that probe the effects of different
geometries, boundary conditions, and other modelling choices.

4.3 Effects of subadiabatic layers on global dynamos (Paper IV)

The results discussed in Section 3.1 imply that the canonical convection modelling paradigm has to be revised
to take into account the convecting yet stably stratified Deardorff layers in deep convection zones. An extended
stably stratified layer at the base of the convection zone has important implications for global dynamos. For
instance, magnetic fields are less susceptible to rise buoyantly in stably stratified layers, thus allowing stronger
fields to reside within the convection zone. Furthermore, deep overshooting or Deardorff layers can also lead to
an extended helicity inversion layer that has been shown to result in solar-like equatorward migrating dynamo
wave Duarte et al. (2016). The most straightforward way in which a Deardorff layer can be realized is to allow
a smoothly varying heat conductivity connecting the radiative and convective regions (Paper I). Therefore the
Kramers opacity law was implemented in semi-global wedge simulations that are used to model convection and
dynamos of solar-like stars in Paper IV.

A representative result of the enthalpy luminosity, Lenth
r = 4πr2F enth

r , and the interior structure in terms
of buoyancy, Deardorff and overshoot layers is shown in the left panel of Figure 18. The enthalpy flux is highly
anisotropic with maxima at the equator and at the highest latitudes retained in the model. With the exception of
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Petri J. Käpylä HABILITATIONSSCHRIFT UNIVERSITY OF FREIBURG

the equatorial regions, the enthalpy flux has a systematic poleward component. The absolute magnitude of the
latitudinal anisotropy is much larger than that expected in real stars because we used ELM; see Section 2.3. To
obtain an estimate for the latitude variation with realistic luminosity, the relevant scaling relations need to be
applied (Paper III,Paper V). The enthalpy luminosity scales proportional to Lratio which in this case is 2.1 ·105,
meaning that the latitudinal flux variation in a real star is smaller by this factor. Furthermore, if a fixed profile
of K is used, the anisotropy is even larger than in the case where the Kramers opacity laws; see Paper V.
Nevertheless, recent helioseismic results suggest that deep convection in the Sun is indeed more vigorous near
the equator Hanasoge et al. (2020).

Figure 19: Internal rotation profile of the
same simulation as in Figure 18. Adapted
from Paper IV.

The anisotropy of the enthalpy flux is also imprinted in the
latitudinal variation of the depths of the Deardorff and overshoot
layers. Figure 18 shows that the Deardorff layer is in general
very shallow except at midlatitudes. This can be understood in
light of the results obtained in Paper X: convection in these sim-
ulations is already sufficiently constrained by rotation such that
the Deardorff layer is reduced due to the decreasing anisotropy
between upflows and downflows. Furthermore, the simulations
in Paper IV have Preff = 1 which may not be representative of
convection occurring in real stars; see the discussion Section 3.3
and Paper VII.

Given that the Deardorff layers in the rotating semi-global
simulations are quite shallow it is therefore not a major surprise
that the dynamo solutions are not very different from models
where Deardorff layers are absent; see the right panel of Fig-
ure 18. This is very similar to several earlier simulations with a
fixed profile of heat conductivity (e.g. Käpylä et al. 2012; War-
necke et al. 2014; Warnecke 2018). Such solar-like solutions
are obtained on a limited range of parameters and the equator-
ward migration is explained be a mid-latitude minimum of Ω;
(Warnecke et al. 2014, 2018, see also Figure 19). This feature is
absent from the helioseismically obtained rotation profile of the Sun; see Figure 1. The mid-latitude minimum
of Ω in simulations can be explained by the large-scale Busse columns near the equator that appear inside the
tangent cylinder. The absence of this feature in the Sun is another hint that essential features of deep solar
convection are not yet captured by the current simulations.

5 Conclusions and future directions

The observational and numerical results during the last decade or so indicate fairly clearly that the current
understanding of stellar convection is incomplete. Nevertheless, numerical simulations are an invaluable tool
to study fundamental dynamo mechanisms in various kinds of stars. My research has touched several aspects
of these issues and the key topics of the publications included in this dissertation can be categorized in three
groups:

1. Studies of fully compressible model setups that use the enhanced luminosity method (ELM) and clarify
scalings relations between simulations and stars with realistic luminosity (Paper V). Furthermore, the
scaling of various dynamical quantities such as convective overshooting (Paper III), velocity (Paper III,
Paper X), and temperature fluctuations (Paper V) as functions of the luminosity excess were confirmed
numerically. The ELM models enable running simulations to thermal relaxation (Paper IX) which is
typically infeasible with realistic luminosities. The most significant result from these studies is that the
convective overshooting is less strongly dependent on the luminosity that previously thought and that in
a simulation with luminosity excess of 106 the overshooting may only be three times deeper than with
the realistic luminosity.

2. Targeted studies of deep stellar convection probing the effects of subadiabatic layers (Paper I, Paper III),
rotation (Paper X), Prandtl number in local (Paper VII) and semi-global models (Paper IX). These studies
showed that the deep parts of convection zones are likely to have subadiabatic layers if the convective
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and radiative layers connect smoothly (Paper I, Paper III). The results of Paper X show that while hy-
drodynamic convection follows the CIA scaling, the flows in deep solar convection zone are not strongly
rotationally constrained and that the effect of rotation is unable to reduce the dominant scale of convec-
tion sufficiently to account for the convective conundrum. All of these simulations were made with a
thermal Prandtl number near unity whereas in stellar convection zones Pr ≪ 1. The asymmetry between
upflows and downflows and the corresponding energy transport efficiency was shown to be sensitive to
the Prandtl number in Paper VII. These effects were particularly pronounced when the Prandtl number
was smaller than unity, implying that convection in stars can indeed be quite different to what current
simulations lead us to believe. However, in Paper IX the transition of differential rotation from anti-solar
to solar-like state was shown to be more sensitive to magnetic fields than to the Prandtl number.

3. Studies of global dynamos as functions of stellar age (Paper II, Paper VIII) and mass (Paper VI), and
the effects of subadiabatic layers of dynamos (Paper IV). The most striking result here is the similar
evolution of large-scale dynamos as a function of rotation in solar-like stars with a convective envelope
(Paper II) and in fully convective stars (Paper VI), suggesting that a universal mechanism is responsible
for both. In accordance with previous studies, the range of parameters where the large-scale dynamo is
predominantly axisymmetric and cyclic is rather narrow (Paper II, Paper VIII), and that the behavior of
the cycles as a function of rotation is sensitive to yet undiscovered details of the models (Paper VIII).
The effect of a subadiabatic layer on the dynamo solutions was shown to be weak in Paper IV, but this is
subject to the caveat that such layers can be significantly deeper in real stars.

While there has been significant progress in the understanding of stellar convection over the past years,
with some contributions described in the present thesis, several open questions remain. The most prominent
of these is the apparent absence of large-scale velocity power, especially the thermal Rossby waves and giant
cells, in the Sun as opposed to simulations. Another major issue is that the solar dynamo remains mysterious
in the sense that no 3D simulation captures it accurately. Furthermore, the transitions of differential rotation
and dynamo modes in stars other than the Sun occur at different rotation rates than in simulations. In the
opinion of the current author, the cause of all of these questions lies very likely in the inability of the current
simulations to capture the true essence of deep stellar convection with sufficient fidelity. Therefore further
development of models that can reach more realistic flows and magnetic fields, and that can more accurately
capture the surface-driven small scale entropy rain are required. In light of the prohibitive numerical constraints,
major advancements are less likely to come from brute force efforts than from clever ways to incorporate the
unresolved small scales in global models. These are likely to employ modelers for many years to come.
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Petri J. Käpylä HABILITATIONSSCHRIFT UNIVERSITY OF FREIBURG

Hanasoge, S.M., Hotta, H., & Sreenivasan, K.R. (2020). Science Advances, 6, eaba9639
Hindman, B.W. & Jain, R. (2022). ApJ, 932, 68
Hotta, H. (2017). ApJ, 843, 52
Hotta, H. & Kusano, K. (2021). Nature Astronomy, 5, 1100
Hotta, H., Kusano, K., & Shimada, R. (2022). ApJ, 933, 199
Irving, Z.A., Saar, S.H., Wargelin, B.J., & do Nascimento, J.D. (2023). ApJ, 949, 51
Jermyn, A.S., Anders, E.H., Lecoanet, D., & Cantiello, M. (2022). ApJS, 262, 19
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Käpylä, P.J., Käpylä, M.J., Olspert, N., Warnecke, J., & Brandenburg, A. (2017). A&A, 599, A4
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Käpylä, P.J., Korpi, M.J., Stix, M., & Tuominen, I. (2005). A&A, 438, 403
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