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Results from kinematic solar dynamo models employing α-effect and turbulent pumping from local convection calcula-
tions are presented. We estimate the magnitude of these effects to be around 2–3 m s−1, having scaled the local quantities
with the convective velocity at the bottom of the convection zone from a solar mixing-length model. Rotation profile of
the Sun as obtained from helioseismology is applied in the models; we also investigate the effects of the observed surface
shear layer on the dynamo solutions. With these choices of the small- and large-scale velocity fields, we obtain estimate
of the ratio of the two induction effects, Cα/CΩ ≈ 10−3, which we keep fixed in all models. We also include a one-cell
meridional circulation pattern having a magnitude of 10–20 m s−1 near the surface and 1–2 m s−1 at the bottom of the
convection zone. The model essentially represents a distributed turbulent dynamo, as the α-effect is nonzero throughout
the convection zone, although it concentrates near the bottom of the convection zone obtaining a maximum around 30◦ of
latitude. Turbulent pumping of the mean fields is predominantly down- and equatorward. The anisotropies in the turbulent
diffusivity are neglected apart from the fact that the diffusivity is significantly reduced in the overshoot region. We find
that, when all these effects are included in the model, it is possible to correctly reproduce many features of the solar activity
cycle, namely the correct equatorward migration at low latitudes and the polar branch at high latitudes, and the observed
negative sign of BrBφ. Although the activity clearly shifts towards the equator in comparison to previous models due
to the combined action of the α-effect peaking at midlatitudes, meridional circulation and latitudinal pumping, most of
the activity still occurs at too high latitudes (between 5◦ . . . 60◦). Other problems include the relatively narrow parameter
space within which the preferred solution is dipolar (A0), and the somewhat too short cycle lengths of the solar-type solu-
tions. The role of the surface shear layer is found to be important only in the case where the α-effect has an appreciable
magnitude near the surface.

c© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction

The early solar dynamo models, initiated by Parker (1955),
relied on a scalar α-effect and a negative gradient of the an-
gular velocity, Ω, in the convection zone (e.g. Steenbeck &
Krause 1969; Deinzer & Stix 1971; Köhler 1973). These
simple models were enormously successful in reproduc-
ing many of the observed features of the solar cycle, most
prominently the equatorward propagating activity belts.

During the recent years, however, helioseismology has
revealed that the radial differential rotation shows a positive
gradient near the equator, whilst a negative gradient occurs
only at high latitudes. Moreover, the strongest gradients oc-
cur near the poles and at the bottom of the convection zone
(e.g. Schou et al. 1998; Thompson et al. 2003). The sign
of the Ω-gradient, if combined with positive (negative) α-
effect in the Northern (Southern) hemisphere, leads to pole-
ward migration of the activity belts near the equator and
to equatorward migration in the polar regions according to
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mean-field dynamo theory (Parker 1955; Yoshimura 1975).
This is in contradiction with the observed migration of solar
activity tracers, being equatorward at low latitudes, whilst
a weaker polarward wave occurs at high latitudes. The ob-
served strong differential rotation in the polar regions, to-
gether with the commonly adopted description of the α-
effect being proportional to cos θ therefore peaking at the
poles, leads to dynamo solutions with high-latitude activ-
ity; virtually no sunspots, however, are observed above the
latitude ±40◦.

A suitable meridional circulation pattern is one possi-
ble remedy to the aforementioned problems. At the mo-
ment it is known that near the surface of the Sun, i.e. the
topmost 10–20 Mm, there is a poleward flow of the order
of 10–20 m s−1 (Zhao & Kosovichev 2004; Komm et al.
2004), but very little is known about the structure of the
flow in deeper layers. Models of the solar differential rota-
tion predict that there should be a return flow near the bot-
tom of the convection zone with a magnitude of approxi-
mately 1 m s−1 (e.g. Kitchatinov & Rüdiger 1999; Rempel
2005). The meridional flow structure and a low value of the
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turbulent diffusivity, ηt, are of critical importance for the so-
called flux transport dynamos (e.g. Choudhuri, Schüssler &
Dikpati 1995; Dikpati & Charbonneau 1999). These mod-
els are essentially αΩ-dynamos where the meridional flow
works as a conveyor belt for the poloidal magnetic field,
and the α-effect is only due to the decay of active regions
near the solar surface, or due to instabilities in the magnetic
layer below the convection zone (e.g. Schmitt, Schüssler &
Ferriz-Mas 1996; Brandenburg & Schmitt 1998; Dikpati &
Gilman 2001), whereas the shear in the tachocline is respon-
sible for the generation of the toroidal field. However, in
the present paper we do not exclude the possibility to have
an α-effect due to cyclonic turbulent motions in the con-
vection zone proper as is expected in the mean-field the-
ory and suggested by the local convection calculations (e.g.
Brandenburg et al. 1990; Ossendrijver, Stix & Brandenburg
2001, Ossendrijver et al. 2002; Käpylä et al. 2006, hereafter
KKOS). In this case it is questionable whether the merid-
ional flow alone is able to counter the missing activity and
wrong migration of the activity belts near the equator.

Another possibility to solve the problems outlined above
arises in the form of dynamo coefficients. Most of the so-
lar models have up to date relied on a scalar α-effect,
or they have taken into account a limited amount of the
anisotropies, such as vertical pumping of the mean magnetic
field (e.g. Brandenburg, Moss & Tuominen 1992), or the
contributions to the α-effect due to the steeply decreasing
turbulence intensity towards the bottom of the convection
zone (Rüdiger & Brandenburg 1995). Recently, Ossendri-
jver et al. (2002) computed all of the coefficients aij that
appear in the expansion

Ei = aijBj + bijk
∂Bj

∂xk
+ · · · , (1)

describing the small-scale effects on the large scales from
local numerical 3D models of stellar convection. Taking
only the first term on the rhs into account, E can be writ-
ten as

E = αB + γ × B , (2)

where α and γ are defined via

αij =
1
2
(aij + aji) , (3)

γi = −1
2
εijkajk , (4)

and consist of the symmetric and anti-symmetric parts of
aij . The diagonal components of αij describe the genera-
tion of a large scale magnetic field through the α-effect. The
vector γ describes turbulent pumping of the mean field with
a velocity that is common for all field components. The off-
diagonal components of αij contribute to the field direction
dependent part of the pumping effect (see e.g. Ossendrijver
et al. 2002; KKOS).

The main findings for the α-effect in the study of
Ossendrijver et al. (2002) were that whereas it is highly
anisotropic, the component corresponding to αφφ is almost
constant in magnitude as a function of latitude for Coriolis

number of Co = 2Ωτ ≈ 2.5, where τ is an estimate of
the convective turnover time. It was also established numer-
ically that the turbulent pumping of the mean magnetic field
depends upon the field component. The results also clearly
indicate down- and equatorward pumping of the mean mag-
netic fields that can alleviate the problems facing solar dy-
namo models. Furthermore, recently KKOS extended the
study of Ossendrijver et al. (2002) to the rapid rotation
regime, i.e. Co ≈ 10, corresponding to the deep layers of
the solar convection zone. The main result of this study is
that αφφ, responsible for the generation of the poloical field
from the toroidal one, no longer peaks at the poles but rather
at around latitude Θ = 30◦, which could be of further help
for the solar dynamo models employing the helioseismic ro-
tation profile. The vertical pumping of the magnetic field is
downward near the poles, but can be upward near the equa-
tor. The latitudinal pumping is always towards the equator,
but it is concentrated in a rather narrow latitude range, i.e.
|Θ| < 30◦ near the equator. The vertical pumping of the
toroidal field was found to be very small or upward at lati-
tudes |Θ| < 45◦.

In the present study we explore the implications of the
local 3D results for the solar dynamo by means of axisym-
metric mean-field dynamo models employing the observed
internal rotation of the Sun. Starting from a simple α-profile
(cos θ in latitude and constant in radius within the convec-
tion zone) we demonstrate the problems facing solar dy-
namo models. Then we introduce an α-profile that captures
the essentials of the magnitude and latitude dependence
found in local convection calculations. Then we proceed by
adding the pumping effects and finally a reasonable merid-
ional flow constrained by the flow velocity observed on the
solar surface. We also discuss the stability of quadrupolar
and dipolar field configurations for the chosen Ω- and α-
profiles with and without turbulent pumping and meridional
flow. Finally, we discuss briefly the phase dilemma of the
radial and toroidal magnetic fields which has been widely
used as a constraint for solar dynamo models. The remain-
der of the paper is organised as follows: in Sect. 2 the mean-
field model is described in detail, and in Sects. 3 and 4 we
present the results and the conclusions of the study.

2 The model

We study axisymmetric kinematic mean-field models of the
solar dynamo in spherical polar coordinates within a shell
0.6R# ≤ r ≤ R#. The inner region of the shell up to rc =
0.7R# models an overshoot region below the convection
zone. We solve the mean-field induction equation
∂B

∂t
= ∇× [(U + γ) × B + αB − ηt∇× B] , (5)

where U = Ω × r + Umer is the velocity, r = rêr the
radius vector, Ω = Ω(r, θ)k̂ the prescribed rotation pro-
file, k̂ the unit vector along the rotation axis, and Umer =
(Ur, Uθ, 0) the prescribed meridional flow. α and γ are
given by Eqs. (3) and (4), respectively. ηt is the turbulent
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diffusion which we treat as a scalar field neglecting its ten-
sorial nature for the time being. However, we take into ac-
count the decrease of ηt in the overshoot region via

ηt(r) = ηc + 0.45η0

[
1 + tanh

(
r − rc

d1

)]
, (6)

where ηc = 0.1η0, d1 = 0.015, and η0 the value in the
convection zone.

Under the assumption of axisymmetry, the magnetic
field can be represented with two scalar fields A and B ac-
cording to

B = BT + BP = ∇× (Aêφ) + Bêφ . (7)

Thus we obtain separate evolution equations for A and B,
which we non-dimensionalize by choosing the following
units:

[r] = R# ≡ R, [t] = R2/η0 ≡ τ, [U ] = η0/R,

[ηt] = η0, [B] = B0, [A] = RB0, [Ω] = Ω0, (8)

where the subscript 0 refers to a typical value of the quantity
in question. The resulting equations are given by Eqs. (A1)
and (A2) in Appendix A. The models are controlled by the
dimensionless parameters

Cα =
α0R

η0
, CΩ =

Ω0R2

η0
, CU =

u0R

η0
, (9)

describing the magnitude of the α-effect, differential rota-
tion and meridional flow with respect to diffusion. In what
follows, α0 and u0 are the maximum values of the α-effect
and the latitudinal component of the meridional flow.

The nonlinear back reaction of the magnetic field on the
turbulence and thus on the α-effect is modelled via a simple
α-quenching formula

αij [r, θ, B(r, θ)] =
αij

1 + [B(r, θ)/Beq]2
, (10)

where Beq is the equipartition strength of the large-scale
magnetic field. In practice the value of Beq determines the
saturation strength of the magnetic field and we set simply
Beq/B0 = 1. The actual equipartition value can be esti-
mated from typical values of the local turbulent velocity and
density using a mixing length model of the solar convection
zone. The values urms ≈ 10 m s−1 and ρ = 100 kg m−3

corresponding to the situation at the bottom of the convec-
tion zone yield saturation strengths of the order of a few
kG, and similar values are obtained throughout the convec-
tion zone. The same quenching formula is also applied on
the turbulent pumping effects.

The equations (A1) and (A2) are solved over the radius
0.6R ≤ r ≤ R and colatitude 0 ≤ θ ≤ π using a two-
dimensional equidistant grid of Nr × Nθ gridpoints. The
boundary condition at the poles reads A = B = 0, and in
the radial direction pseudo-vacuum conditions

B =
∂(rA)
∂r

= 0 , (11)

are used at the surface, and perfectly conducting condition
at the bottom of the convection zone, i.e.

A = ηt
∂(rB)
∂r

− αθθr
∂A

∂r
= 0 . (12)

The numerical resolution is varied between 41 × 81 and
61× 121 grid points. The constant timesteps used are ∆t =
2.5·10−5 for the low resolution case and ∆t = 1.5·10−5 for
the higher resolution case. The code has been validated us-
ing the “dynamo benchmark” test cases (Arlt et al. 2006);
the pseudo-vacuum boundary conditions used here were
found to result in slightly reduced critical dynamo numbers
in the case of αΩ dynamos if compared to methods with
real vacuum boundaries, but otherwise good agreement with
other methods was found. Due to this we prefer to keep the
pseudo-vacuum boundaries at the surface due to the sim-
plicity of their implementation. The code employs second
order accurate explicit spatial discretisation and first (Eu-
ler) or second order (Adams-Bashforth-Moulton predictor-
corrector; see e.g. Caunt & Korpi 2001) accurate time step-
ping.

The α-tensor and γ-vector component profiles are
adapted from the local convection model of KKOS (see be-
low). The Coriolis numbers realised in the convection mod-
els are here interpreted as depths in the convection zone (see
Fig. 1 of Käpylä et al. 2005), so that Co = 1 corresponds to a
depth of roughly 50 Mm below the surface, Co = 4 matches
the middle, and Co = 10 roughly the bottom of the solar con-
vection zone. We neglect the possibility to have an α-effect
in the overshoot region in the present study. The latitudinal
dependences are approximative fits to the local calculations,
made at four different latitudes for the sets Co = 1 and Co =
4 with 30◦ steps, and seven different latitudes for the set Co
= 10 with 15◦ steps. The rotation profile used throughout
the investigation is a digitisation of the helioseismological
inversion (e.g. Schou et al. 1998), see Fig. 1. Since no re-
liable inversions are available for the polar regions, we as-
sume the profiles of Ω at |Θ| = 75◦ and |Θ| = 90◦ to be
proportional to the profile at 60◦ via

Ω(r, 75◦) = Ω(r, 60◦)
[
0.05

( r0 − r

r0 − R

)
− 1

]2

, (13)

Ω(r, 90◦) = Ω(r, 60◦)
[
0.1

( r0 − r

r0 − R

)
− 1

]2

, (14)

where r0 = 0.6, and Θ = 90◦ − θ is the latitude. With this
choice Ω at the surface on the poles is consistent with the
observed surface value.

In order to characterise the resulting solutions of the
models in terms of the large scale magnetic field structure,
we define the parity as

P =
E(S) − E(A)

E(S) + E(A)
, (15)

where E(S) and E(A) are the energies of the symmetric and
antisymmetric parts of the field, respectively (see, e.g. Bran-
denburg et al. 1989). For a symmetric quadrupolar solution
(S0) the parity is +1, and for an antisymmetric dipolar so-
lution (A0), P = −1.
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Fig. 1 Upper panel: rotation profile adapted from the helioseis-
mic results. Lower panel: the angular velocity Ω normalised by
the core angular velocity, Ωcore = 430 nHz, at latitudes 0◦ (equa-
tor, thick solid line), 15◦ (dashed), 30◦ (dot-dashed), 45◦ (triple-
dot-dashed), 60◦ (solid), 75◦ (long-dashed), and 90◦ (pole, dotted
line). The dashed vertical lines at r = 0.70R and r = 0.95R de-
note the bottom of the convection zone and the depth above which
the surface shear layer is located, respectively. The thin horizontal
lines above r = 0.95R give Ω in the case where the surface shear
is neglected.

3 Results

3.1 Estimates of Cα and CΩ for the Sun

Using the profiles of the transport coefficients from theoret-
ical considerations or local 3D convection calculations, the
remaining task is to choose appropriate values for the three
dimensionless control parameters Cα, CΩ, and CU , defined
via Eq. (9). The local convection calculations of KKOS
yield max(|αij |)/urms ≈ 0.2. We scale this to physical

units by using the mixing length estimate of the turbulent
velocity at the bottom of the convection zone, i.e. uMLT

rms ≈
10 m s−1, and obtain a magnitude of 2 m s−1 for α0. Fur-
thermore, using the mean angular velocity of the Sun, Ω0 =
2.6 × 10−6 s−1, the ratio Cα/CΩ = α0/(Ω0R) is therefore
approximately 10−3; in the dynamo models describing the
Sun, we keep this ratio fixed. Furthermore, the meridional
flow at the surface, u0 ≈ 10 . . . 20 m s−1, is known from ob-
servations, from which we obtain another useful ratio for the
solar models, i.e. CU/CΩ = u0/(Ω0R) ≈ 0.005 . . .0.01.

The value of η0 still remains a free parameter. Sim-
ple mixing length estimates for the deep layers of the so-
lar convection zone (e.g. Stix 2002) give ηt = 1

3uMLT
rms d ≈

5 · 108 m2 s−1, where d = αMLTHp, αMLT = 1.66, and
Hp ≈ 5 · 107 m. Similar or slightly higher values are ob-
tained for all depths in the solar convection zone (see e.g.
Brandenburg & Tuominen 1988). We find that growing so-
lutions are possible when η0 ≈ 108 m2 s−1 (see below).

3.2 Constant α with cos θ latitude dependence

Although the main emphasis of this paper is to investigate
the role of anisotropies found in the local convection mod-
els, we perform a set of calculations with a constant α-
effect in the convection zone with a previously commonly
used cos θ latitude profile in order to demonstrate the cur-
rent problems of solar mean-field dynamo models. In all of
the calculations in this section, we put

αij =
1
2
α0δij

[
1 + tanh

(
r − rc

d1

)]
cos θ , (16)

where rc = 0.7 and d1 = 0.015. The tanh-factor takes
care of the vanishing α-effect in the overshoot region. We
study this simple case first and determine the critical dy-
namo number Ccrit

α as a function of CΩ for the antisymmet-
ric A0 and symmetric S0 modes. The results for the A0 case
are shown in Fig. 2. We note that the critical values for the
S0 mode are very close to those of the A0 mode, but consis-
tently slightly larger. The difference, however, is less than
one per cent in all cases. For values of CΩ larger than 104

the difference between the αΩ and α2Ω models is less than
5 per cent. In what follows we consider the case Cα = 15,
CΩ = 1.5 · 104 as our standard model, in which case we
adopt the αΩ-approximation. Moreover, we note that the
critical dynamo number in the case of no surface shear is
roughly 20 per cent larger than in the case where it is taken
into account.

Keeping the ratio Cα/CΩ fixed at 10−3 we find that the
critical dynamo number, Dcrit ≡ Ccrit

α CΩ, for the exci-
tation of the antisymmetric A0 mode is roughly Dcrit ≈
4.89 · 104 corresponding to Ccrit

α ≈ 6.99 using the αΩ-
approximation (Dcrit ≈ 4.37 ·104 corresponding to Ccrit

α ≈
6.61 if the α-terms are retained in the equation of B). In the
marginal case the turbulent diffusivity turns out to be η0 ≈
2.0 ·108 m2 s−1. The toroidal magnetic field of the marginal
solution exhibits an oscillation period of tcyc ≈ 0.044τ ,
which corresponds to roughly 3.2 years in physical units.
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Fig. 2 Critical dynamo numbers Ccrit
α as function of CΩ for the

α-profile given by Eq. (16). The solid and dashed lines give the
results for the rotation profile including the surface shear, shown
in Fig. 1, and using the αΩ and α2Ω approximations, respectively.
The dot-dashed (αΩ) and triple-dot-dashed (α2Ω) curves give the
corresponding results with a rotation profile where the surface
shear layer has been removed. The thick solid line describes the
Sun, i.e. where Cα/CΩ = 10−3.

Considering the resulting butterfly diagrams we com-
pare models where the shear above r = 0.95R is either
turned off (Fig. 3) or retained (Fig. 4). In the former case
the butterfly diagram of the azimuthal field near the sur-
face shows that the migration of the activity belts at lati-
tudes |Θ| < 60◦ is poleward with an equatorward branch
near the pole, whereas the latter case exhibits a strong equa-
torward propagating activity belt from latitude ≈ 80◦ all
the way down to the equator. The migration of the former
type has frequently been reported in mean-field models with
distributed α-effect combined with helioseismological rota-
tion profile (e.g. Bonanno et al. 2002). Concerning the latter
case, we note here that if there is a non-vanishing α-effect
near the surface, the surface shear layer plays a very impor-
tant role in shaping the butterfly diagram. However, if the
α-effect is more concentrated in the deep layers of the con-
vection zone the surface shear plays only a minor role (see
Sect. 3.5).

3.3 α-effect from the local convection models

Already the early analytical investigations of the turbu-
lent electromotive force showed that the α-effect is highly
anisotropic (Steenbeck, Krause & Rädler 1966). These
anisotropies have recently been studied by means of local
convection calculations by Ossendrijver et al. (2002) and
KKOS. In the present study we employ these numerical re-

Fig. 3 Butterfly diagram of the toroidal magnetic field from r =
0.99R from a model with Cα = 15 and CΩ = 1.5 · 104 with
the rotation profile shown in Fig. 1 with the surface shear at r >
0.95R artificially turned off.

Fig. 4 Butterfly diagram of the toroidal magnetic field from
r = 0.99R from a model with Cα = 15 and CΩ = 1.5 · 104

with the full rotation profile shown in Fig. 1. The cycle period is
approximately tcyc ≈ 6.5 years.

sults of the α-effect and turbulent pumping in solar dynamo
models. As was discussed earlier, we set the ratio Cα/CΩ to
10−3 in the case of the solar dynamo. Effectively the small
value of the ratio Cα/CΩ means that the dominant (diago-
nal) component of α is αφφ which appears in the equation
of the poloidal field (see Eqs. A1 and A2). Adopting theαΩ-
approximation and setting αrr = αθθ = 0 does not signifi-
cantly change our results. These components can, however,
be of vital importance for α2-dynamos and their oscillation
properties such as those investigated by Rüdiger, Elstner &
Ossendrijver (2003).

In order to make use of the local results of KKOS we
use the Coriolis number to determine the depth of the lo-
cal convection model in the convection zone. In an earlier
study we computed the Coriolis number from a mixing-
length model of the solar convection zone (Fig. 1 of Käpylä
et al. 2005), and found that it varies between 10−3 near the
surface and 10 or larger in the deep layers. In KKOS, sets of
convection calculations at different latitudes are made with
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Fig. 5 Left panel: profiles of the αφφ-component from three depths r = (0.765, 0.866, 0.946)R corresponding to Coriolis numbers
Co = (1, 4, 10), respectively, using the convective velocity at the bottom of the convection zone as normalisation. Right panel: the actual
αφφ(r, θ) profile used in the models.

approximate Coriolis numbers of 1, 4, and 10. Identifying
these values with depths in the solar convection zone, they
correspond to r = 0.946R, r = 0.866R, and r = 0.765R,
respectively. In KKOS it was found that for Co = 1 the com-
ponent corresponding to αφφ is consistent with a cos θ lati-
tude profile, whereas for Co = 4 αφφ is basically constant as
function of latitude from the poles to the latitude |Θ| = 30◦.
In the rapid rotation regime, i.e. Co = 10, αφφ peaks around
|Θ| = 30◦ and the magnitude at the poles decreases. We use
the following approximations of the latitude dependence of
αφφ at the different depths

αφφ(r = 0.946R, θ) =
1
4
α0 cos θ , (17)

αφφ(r = 0.866R, θ) = −1
2
α0 tanh

[
4
(
θ − π

2

)]
, (18)

αφφ(r = 0.765R, θ) = 3α0

(
sin2 θ cos θ +

1
4

cos θ
)
,(19)

see the left panel of Fig. 5 (see also Figs. 3 to 7 of KKOS).
We use cubic spline interpolation in order to obtain a value
of αφφ for all grid points, see the right panel of Fig. 5. In
Eqs. (17) to (19) an estimate of the convective velocity,
u ≈ 10 m s−1, at the bottom of the convection zone has
been used to scale the profiles at all depths resulting an αφφ

profile that peaks near the bottom of the convection zone at
around latitude 30◦.

Considering models with the α-effect depicted in Fig. 5,
we find that the critical dynamo number is significantly
larger than in the case of constant α in the convection zone,
see Fig. 6. Again the critical value for the S0 mode is very
slightly larger than that of the A0 mode. For the solar case of
Cα/CΩ = 10−3 we find Dcrit ≈ 8.2 · 104, or Ccrit

α = 9.04,
instead of Dcrit ≈ 4.89 · 104 and Ccrit

α ≈ 6.99 in the case
of constant αφφ in the whole convection zone. This is of
course due to the fact that the integral of αφφ over the full
shell is significantly less than in the case of radially constant
αφφ. Furthermore, we find that initially purely antisymmet-
ric A0-type configurations are only stable when Cα < 12.
In the range 12 < Cα < 17 the initially purely dipolar

A0 solutions evolve towards a symmetric S0 solution af-
ter about one diffusion time. Furthermore, when Cα > 17
mixed mode solutions are excited. The butterfly diagrams
for the cases Cα < 17 are characterised by strong activity
at high latitudes, the maximum being near 50◦, see Fig. 7.
The migration of the activity belts is equatorward at high lat-
itudes and poleward from the equator up to latitude of about
45◦. This demonstrates that the included surface shear layer,
leading to equatorward migration in the case of constant in
radius α-effect, plays a less important role when α concen-
trates at the bottom of the convection zone. The parameter
range within which the dipolar A0 solution is stable in the
nonlinear regime is quite narrow. Adding radial and latitudi-
nal components of the pumping vector or a meridional flow
pattern is observed to widen this range (see below).

3.3.1 Effect of the general pumping effect

The local convection models of KKOS yield all the three
components of the pumping vector γ. In the present axisym-
metric investigation, the azimuthal pumping γφ, however,
would appear only through its radial and latitudinal gradi-
ents. These terms would act analogously to the differential
rotation but due to the small value of Cα/CΩ, these gradi-
ents are negligible in comparison to the differential rotation.
Therefore we consider here only the radial and latitudinal
pumping effects.

According to the local models, the radial pumping is
directed downwards throughout the convection zone in the
slow and moderate rotation regimes, i.e. Co < 4. The radial
pumping velocity is non-zero also in the case of no rotation
due to the fact that it is mostly caused by the diamagnetic ef-
fect (see e.g. Ossendrijver et al. 2002). In the slow and mod-
erate rotation regime the dependence on rotation (depth) is
indeed rather weak, although γr tends to somewhat increase
at the poles and decrease at the equator as function of rota-
tion. The trend is most clear in the rapid rotation regime,
i.e. Co = 10, where the radial pumping is very small or even
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890 P.J. Käpylä, M.J. Korpi & I. Tuominen: Solar dynamo models with α-effect and turbulent pumping

Fig. 6 Critical dynamo number Ccrit
α as a function of CΩ for the

antisymmetric A0 mode with the α-profile from convection calcu-
lations, see Fig. 5 (solid line). The additional curves are with latitu-
dinal and radial pumping according to Eqs. (20) and (21) (dashed
line), and with meridional flow according to Eqs. (A3) and (A4)
(dot-dashed line). The thick solid line describes the Sun, i.e. where
Cα/CΩ = 10−3.

positive at low latitudes and at the equator. In the overshoot
region γr vanishes. We adopt a simplified profile which cap-
tures the main aspects of the results of KKOS by setting

γr(r, θ) = −1
2
α0

[
tanh

(r − rc

d1

)
− tanh

(r − r1

d2

)]
×

{
exp

[
(r − rc)2

d2
3

]
sin θ + 1

}
, (20)

where rc = 0.7, r1 = 0.975, d1 = 0.015, d2 = 0.1, and
d3 = 0.25. The maximum magnitude of the vertical pump-
ing is taken to be the same as that of the α-effect, i.e. α0, as
is suggested by the local results..

The latitudinal pumping velocity γθ is directed equator-
wards throughout the convection zone. This effect is rota-
tionally excited (Krause & Rädler 1980), and thus it shows
a strong rotational dependence so that in the bottom of the
convection zone it has a peak magnitude of ≈ 2 m s−1

whilst it is negligible at the surface. Latitudinally γθ is
strongest near the equator at around 15◦ with decreasing
values towards the poles. Similarly to the radial component,
γθ vanishes in the overshoot region. We adopt again a sim-
plified profile described by

γθ(r, θ) = α0

[
tanh

(r − rc

d1

)
− tanh

(r − r2

d4

)]
×

sin4 θ cos θ , (21)

where r2 = 0.875 and d4 = 0.075. The magnitude of the
pumping effect in the mean-field equations is controlled by

Fig. 7 Butterfly diagram of the toroidal magnetic field from r =
0.99R from a model with Cα = 15 and CΩ = 1.5 ·104. The cycle
period is approximately tcyc ≈ 7.0 years. αφφ-profile as shown in
Fig. 5.

the nondimensional parameter Cγ ; since the pumping effect
is basically a part of the α-effect and the maximum magni-
tudes of both effects were very similar in the study of KKOS
we set Cγ = Cα.

Adding the pumping velocities defined via Eqs. (20)
and (21) into the model already employing the α-effect
from convection calculations, widens the region in which
the dipolar solution is the preferred one (up to Cα ≈ 50).
The dashed line in Fig. 6 indicates that the pumping effects
make the dynamo easier to excite. This is logical, due to the
fact that the radial pumping is generally downward, i.e. to-
wards regions of larger α-effect. The latitudinal pumping in
the deeper layers has a similar effect, i.e. it transport mag-
netic fields to lower latitudes. Furthermore, using our stan-
dard values Cα = 15 and CΩ = 1.5 · 104, the cycle period
is also significantly longer in this case, i.e. tcyc ≈ 11 years
instead of approximately seven years in the case without
the pumping effects. Another clear effect is that the migra-
tion of the activity belts is now equatorward also at low lat-
itudes, see Fig. 8. Both of these results seem to be direct
consequences of the added latitudinal pumping; otherwise
identical model with γθ = 0 yields a butterfly diagram very
similar to Fig. 7.

3.3.2 Effect of field direction dependent pumping
effect

The off-diagonal components of the (symmetric) tensor
α contribute to the field direction dependent pumping
(Kitchatinov 1991; Ossendrijver et al. 2002; KKOS). There-
fore, in the general case, we need to introduce αij compo-
nentsαrθ, αrφ, andαφθ into the model. However, according
to the results of KKOS, αφθ is clearly the largest in magni-
tude of the components entering the equation for A. The
local calculations show that this component peaks strongly
near the equator at or around latitude 15◦, and the maximum
absolute magnitude is again roughly 2 m s−1. We introduce
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Fig. 8 Same as Fig. 7 but with added radial and latitudinal pump-
ing velocities as defined via Eqs. (20) and (21). The cycle period
is tcyc ≈ 12 years.

Fig. 9 Same as Fig. 8 but with added field direction dependent
pumping according to Eq. (22). The cycle period is about 12 years.

a profile

αφθ(r, θ) = −α0

[
tanh

(r − rc

d1

)
− tanh

(r − r3

d2

)]
×

sin12 θ cos2 θ , (22)

where r3 = 0.85 and d2 = 0.1. The main effect of αφθ

is that it contributes to the radial pumping of the azimuthal
field via γφ

r = γr − αφθ, where γφ
r is the pumping velocity

for the azimuthal field. The local results of KKOS indicate
that the azimuthal field can be pumped upward at latitudes
|Θ| < 45◦. Due to the narrow latitude and radius range
where αφθ is appreciably large, its effects on the surface
are hardly visible (compare Figs. 8 and 9).

3.4 Effect of meridional flow

Solar surface indicators and local helioseismology (Zhao &
Kosovichev 2004; Komm et al. 2004) have revealed that
there is a mean poleward flow of 10–20 m s−1 near the so-
lar surface. Although no observational evidence exists as of
yet, it is generally accepted that there is a return flow at
some greater depth. However, it is also not known whether

there is only one cell in radius or more. The simplest case is
to assume that there is only one cell. We adopt a modified
version of the flow used by Dudley & James (1989), defined
via a potential for the poloidal flow

ψ = x2 sin(πx)P 0
2 (cos θ) , (23)

where x = (r−rc)/(R−rc), and P 0
2 (cos θ) = 1

2 (3 cos2 θ−
1). Here x describes the effect of decreasing density towards
the top of the convection zone. The radial and latitudinal
velocity components are obtained via

ur = − 1
r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
, (24)

uθ =
1
r

∂

∂r

∂ψ

∂θ
, (25)

which are written out explicitly in Eqs. (A3) and (A4) in
Appendix A.

Fixing the maximum value of the flow at the surface to
10 m s−1 yields CU = 75 or CU/CΩ = 0.005 for the stan-
dard model where Cα = 15. Introducing this flow into the
model discussed in Sect. 3.3.2 which already includes both
pumping effects, we obtain the butterfly diagram shown in
Fig. 10. The most visible effect of the meridional flow is
the appearance of the polar branch at latitudes Θ > 60◦.
Furthermore, the equatorward propagating activity belts ap-
pear now at slightly lower latitudes, although the difference
to the observed solar activity is still quite large. The criti-
cal dynamo numbers in the case with meridional flow are in
general somewhat higher than in the case with only radial
and latitudinal pumping taken into account. Furthermore,
when CΩ is smaller than approximately 1.5 · 104, the sym-
metric S0 mode is somewhat easier to excite than the A0
mode (not shown).

In the nonlinear regime the solution is dipolar (A0) for
Cα < 15, quadrupolar in the range Cα ≈ 15 . . .30, and
mixed parity solutions are obtained when Cα > 30 keeping
the ratio CU/CΩ = 0.005 fixed. If CU/CΩ is increased the
activity belts are shifted closer to the equator, but the S0 and
mixed modes become somewhat easier to excite. Increas-
ing the dynamo numbers is associated with an increasing
cycle period, but with the present profiles for the α-effect
and turbulent pumping the solutions in the solar range, i.e.
tcyc ≈ 22 years, all consist of mixed modes.

We note here that in the present models the magnetic
Reynolds number is equal to CU , i.e. Rm = CU ≈ O(100).
This means that we are not in the advection dominated
regime realised in many flux transport dynamo models (e.g.
Dikpati & Charbonneau 1999; Bonanno et al. 2002) where
values in excess of 103 are common. The value of Rm, how-
ever, indicates that the present models are also not fully dif-
fusion dominated, but rather represent a distributed dynamo.

3.5 The effect of the surface shear layer

In order to study the influence of the surface shear layer
on the solution we take the same setup as in the previous
section and turn off the shear above r = 0.95R. The re-
sulting butterfly diagram is shown in Fig. 11. Comparing
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Fig. 10 Same as Fig. 9 but with added meridional flow with
max(uθ) = 10 m s−1 at the surface, with which choice CU = 75.
The cycle period is about 11.5 years.

Fig. 11 Same as Fig. 10 where the surface shear above r =
0.95R has been artificially turned off. The cycle period is about
9.5 years.

this with Fig. 10 shows some differences, most visibly the
less extended active regions, and a narrow region of pole-
ward migration near the equator. In contrast to the case of
uniformly distributed α-effect (see Sect. 3.2) for which case
the surface shear plays a significant role, the importance of
the surface shear is very small if the α-effect more concen-
trated near the bottom of the convection zone.

3.6 Phase relation of BrBφ

We note briefly that in our models the correlation of the ra-
dial and azimuthal magnetic field components, i.e. BrBφ,
is mostly negative (see Fig. 12 for a typical result) in the
latitude range where the activity belts are located in accor-
dance with solar observations (e.g. Stix 1976). This relation
has commonly been used as a constraint for solar dynamo
models (e.g. Stix 1976; Schlichenmaier & Stix 1995; Bran-
denburg 2005) although this has recently been criticized by
Schüssler (2005) who explains this relation as the conse-
quence of the systematic tilt of the bipolar regions due to

Fig. 12 The correlation BrBφ from the model shown in Fig. 10.
Black denotes negative and white positive values.

the action of Coriolis force on rising flux ropes in the con-
vection zone.

4 Conclusions

We have studied kinematic mean-field solar dynamo mod-
els using helioseismologically determined rotation profile
and α-effect and turbulent pumping from the local convec-
tion calculations of Käpylä et al. (2006). We show that if a
simple α-effect profile proportional to cos θ in latitude and
constant in radius is applied, the results are very sensitive to
the presence of a surface shear layer at r > 0.95R. Omit-
ting this feature, the migration of the activity belts is equa-
torward near the poles, weak at midlatitudes, and poleward
at low latitudes. The inclusion of the shear layer results in
equatorward propagation at virtually all latitudes.

The α-coefficients from local convection calculations
tend to be much more concentrated near the bottom of the
convection zone and also closer to the equator with peak
values occurring at around latitude 30◦. In this case, how-
ever, the critical dynamo numbers are significantly larger
due to the more concentrated nature of the α-effect. The
solution is dipolar when Cα < 12 and quadrupolar (S0)
if Cα is larger even if a purely dipolar initial condition is
used. Adding a latitudinal pumping velocity of the order
of 2 m s−1 at the bottom of the convection zone remedies
this problem and helps to shift the activity belts closer to
the equator, whereas the vertical pumping seems to have a
much smaller overall significance for the stability and over-
all structure of the solution. The latitudinal pumping also
helps to restore the equatorward migration of activity belts,
lost by the implementation of the α-effect from convection
calculations. Adding the pumping effects also makes the cy-
cle period significantly longer. Additional upward pumping
of the azimuthal field component through the component
αφθ at near equator regions has very little effect on the so-
lution. In all the models investigated, the correlation BrBφ

is mostly negative, which is in agreement with the observa-
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tions, but none of the models produces poleward migration
at high latitudes (polar branch).

If a single cell meridional flow patterns where the flow
is of the order of 10 m s−1 and poleward near the surface
and significantly smaller and equatorward at larger depths
helps to shift the activity belts further closer to the equator,
although they still appear too high (|Θ| ≈ 5◦ . . . 60◦) in
comparison to the Sun. A region of poleward migration also
appears at high latitudes. If the upper shear layer is removed
from this model, the butterfly diagram changes only little in
contrast to the models where there was an appreciably large
α-effect also near the surface.

The distributed dynamo model investigated in this paper
correctly reproduces many of the general features of the so-
lar cyclic activity, including realistic migration patterns and
correct phase relation, but some problems persist. These in-
clude the excitation of the dipolar (A0) solutions only within
a narrow range of parameters with the anisotropic α-effect
combined with meridional circulation, activity at too high
latitudes for all models investigated, and the somewhat too
short dynamo cycles. With further tuning of the various pa-
rameters going into the model (magnitudes of α- and γ-
effects, strength and profile of the meridional circulation)
it would most likely be possible to obtain a solution repro-
ducing the missing features, as well. Instead of going fur-
ther into the domain of tuning in the present study, we note
that further work in the context of local convection mod-
elling is needed in order to obtain the totally missing infor-
mation on the anisotropies of turbulent diffusivity (work in
progress). It is also necessary to consider the nonlinear sat-
uration process of the α-effect in more detail, for instance
in the form of a dynamical α-effect with helicity fluxes (e.g.
Brandenburg & Subramanian 2005). Further improvements
of the present mean-field model include the relaxation of
the kinematic approach to include full dynamics, for which
purpose information from local convection calculations also
exist (e.g. Käpylä, Korpi & Tuominen 2004). With the inclu-
sion of hydro- and thermodynamics the nonlinear feedbacks
of the kind investigated by e.g. Rempel (2006) could be in-
cluded in a self-consistent way.

Despite of the shortcomings discussed above, we feel
that the simple model presented in this paper demonstrates
two important aspects concerning solar dynamo theory.
Firstly, as recently discussed at length by Brandenburg
(2005) the surface shear layer may be important in shap-
ing the solar dynamo; according to our results this is indeed
to be expected if the α-effect has an appreciable magnitude
near the surface. Secondly, we are able to demonstrate that a
distributed αΩ-dynamo model applying a realistic rotation
profile and meridional flow can reproduce the correct phase
relation and migration of the activity belts. Although merid-
ional circulation is an essential ingredient also in our model,
the magnitude of this effect is of the same order as the tur-
bulent inductive effects and the turbulent diffusivity is an
order of magnitude larger than in the advection dominated
flux-transport dynamos.
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Käpylä, P.J., Korpi, M.J., Ossendrijver, M., Stix, M.: 2006, A&A,

in press, astro-ph/0602111 (KKOS)
Kitchatinov, L.L.: 1991, A&A 243, 483
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A Equations

The equation for A reads

∂A
∂τ

= (Cααφθ − CUUr)

(
A
r

+
∂A
∂r

)

+ (Cααφr − CUUθ)

(
cot θ

r
A +

1
r

∂A
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)

+ CααφφB

+ ηt

(
∂2A
∂r2

+
2
r

∂A
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+
1
r2

∂2A
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+
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r2 sin2 θ

)
, (A1)

where Ui = Umer
i +

Cγ

CU
γi.
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The meridional flow components are given by

ur = 6
x2

r2
sin(πx)

(
3
2

cos2 θ − 1
2

)
, (A3)

uθ = −3
x

r(R − rc)
[2 sin(πx) + πx cos(πx)] sin θ cos θ . (A4)
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