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Abstract We combine a convectively driven dynamo in a spherical shell with a
nearly isothermal density-stratified cooling layer that mimics some aspects of a
stellar corona to study the emergence and ejections of magnetic field structures.
This approach is an extension of earlier models where we employed forced tur-
bulence simulations to generate magnetic fields. A spherical wedge is used which
consists of a convection zone and an extended coronal region up to more than
one and a half of the radius of the sphere. The wedge contains a quarter of the
azimuthal extent of the sphere and 150◦ in latitude. The magnetic field is self-
consistently generated by the turbulent motions due to convection beneath the
surface. Magnetic fields are found to emerge at the surface and are ejected to the
coronal part of the domain. These ejections occur in irregular intervals and are
weaker than in earlier work. We tentatively associate these events with coronal
mass ejections on the Sun, even though our model of the solar atmosphere is
rather simplistic.

Keywords: Magnetic fields, Corona; Coronal Mass Ejections, Theory; Interior,
Convective Zone; Turbulence; Helicity, Current

1. Introduction

Recent observations of the Solar Dynamic Observer (SDO) have provided us with
a record of impressive solar eruptions. These eruptions are mostly associated with
coronal mass ejections (CMEs). These are events through which the Sun sheds
hot plasma from the corona into the interplanetary space. The energy causing
such huge eruptions is stored in the magnetic field and can be released due to
reconnection of field lines (Sturrock, 1980; Antiochos, De Vore, and Klimchuk,
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1999). A fraction of CMEs is directed towards the Earth, hitting its magne-
tosphere and causing phenomena like aurorae. Furthermore, encounters with
CMEs can cause sudden outages of GPS signals due to ionospheric scintillation.
The resulting radiation dose from such events poses risks to astronauts. This is
now also of concern to airlines, because the radiation load during polar flights
can reach annual limits, especially for pregnant women. This leads to a great
interest of scientists in many fields.

However, there is an additional motivation which comes along with the space
weather effects. The solar dynamo, which is broadly believed to be responsible
for the generation of the solar magnetic field, needs to be sustained by shedding
magnetic helicity from the Sun’s interior (Blackman and Brandenburg, 2003).
Mean–field and direct numerical simulations have shown that the magnetic field
generation is catastrophically quenched at high magnetic Reynolds numbers
in closed systems that do not allow magnetic helicity fluxes (Vainshtein and
Cattaneo, 1992; Brandenburg and Subramanian, 2005). The magnetic Reynolds
number, which is the ratio of the advective to the diffusive term in the induction
equation, is known to be very large in the Sun, therefore implying the possibility
of catastrophic quenching of the solar dynamo, unless efficient magnetic helicity
fluxes occur, for example through CMEs (Blackman and Brandenburg, 2003).
Indeed, CMEs are well known to be closely associated with magnetic helicity
(Low, 2001). Observations (Plunkett et al., 2000; Régnier, Amari, and Kersalé,
2002) and a recent study by Thompson, Kliem, and Török (2011) where the
observations are compared with numerical models, suggest that CMEs have a
twisted magnetic structure, implying that CMEs transport helicity outwards.

There has been significant progress in the study of CMEs in recent years.
In addition to improved observations from spacecrafts like SDO or the Solar
TErestical RElation Observatory (STEREO), there have also been major ad-
vances in the field of numerical modeling of CME events (Russev et al., 2003;
Archontis et al., 2009). However, the formation and the origin of eruptive events
like CMEs is not yet completely understood. Simulating CMEs and their forma-
tion is challenging. Leaving the difficulties of modeling the interplanetary space
aside, a CME, after being ejected into the chromosphere or the lower corona,
travels over an extended radial distance to the upper corona. In this environment,
density and temperature vary by several orders of magnitude, which is not easy
to handle in numerical models. Additionally, the origin of the CMEs is assumed
to relate to the magnetic fields and the velocity pattern at the surface. However,
the surface magnetic and velocity fields are rooted in the solar convection zone,
where convective motions, in interplay with differential rotation, generate the
magnetic field and the velocity patterns that are observed at the surface. The
majority of researchers modeling CMEs do not include the convection zone in
their setup, and thereby neglect the effect of the magnetic and velocity fields
being rooted to this layer. Most often the initial conditions for the magnetic
and velocity fields are prescribed or taken from 2D observations, see for example
Antiochos, De Vore, and Klimchuk (1999) and Amari et al. (1999) as well as
Török and Kliem (2003).

Another approach is to study the emergence of flux ropes from the lower
convection zone into the corona. In the presence of strong shear, convection
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simulations have been showing the formation of flux tubes (Guerrero and Käpylä,
2011; Nelson et al., 2011), but such structures are similar to vortex tubes whose
diameter is known to relate with the visco-resistive scale (Brandenburg, Pro-
caccia, and Segel, 1995). In other approaches flux ropes are inserted in a self-
consistent model, but their origin is left unexplained. In several recent papers
(Mart́ınez-Sykora, Hansteen, and Carlsson, 2008; Jouve and Brun, 2009; Fang
et al., 2010), the focus lies on the emergence of magnetic flux and the result-
ing features in the solar atmosphere. However, eruptive events have not been
investigated with this setup. In earlier work (Warnecke and Brandenburg, 2010,
hereafter WB) a different approach was developed. The solar convection zone
was combined with a simple model of the solar corona. The magnetic field, which
is generated by dynamo action beneath the solar surface, emerges through the
surface and is ejected out of the domain. Our focus lies on the connection of the
dynamo–generated field and eruptive events like CMEs through the dynamo-
generated twist. Therefore, WB first used a simplified coronal model and drove
the dynamo with forced turbulence. These simplifications allowed them to study
the emergence and a new mechanism to drive ejections in great detail. In sub-
sequent work (Warnecke, Brandenburg, and Mitra, 2011, hereafter WBM), the
setup of WB was improved by using a spherical coordinate system and helical
forcing with opposite sign in each hemisphere to mimic the effects of rotation
on inhomogeneous turbulence. In addition, WBM applied a stratification due to
gravity in an isothermal fluid. To improve this model, we now employ convection
to generate the velocity field. In a related approach, Pinto and Brun (2011)
considered convective overshoot into the chromosphere and the excitation of
gravity waves therein, but dynamo-generated twist seemed to be unimportant
in their work. The turbulent motions driving the generation of magnetic field are
now self-consistently generated by convective cells operating beneath the surface.
The setup of the convection zone follows ideas of Käpylä, Korpi, and Branden-
burg (2008), Käpylä et al. (2010, 2011) and Käpylä, Mantere, and Brandenburg
(2011), but now with an extended cooling layer to describe some properties
of a solar corona. The results of this work fit well with the results obtained by
earlier work and observations. There are other approaches simulating convection
in hot massive stars, which have thin subsurface convection zones Cantiello et
al. (2011a,b). The model of the solar atmosphere is still a very simplified one,
and can be regarded as a preliminary step, which will provide a reference point
for improved work in that direction.

2. The model

As in WB and WBM a two-layer model is used, which represents the convection
zone and an extended corona-like layer in one and the same model. Our convec-
tion zone is similar to that of Käpylä et al. (2010) and Käpylä, Mantere, and
Brandenburg (2011). The domain is a segment of the Sun and is described in
spherical polar coordinates (r, θ, φ). We model the convection zone starting at
radius r = 0.7R and the solar corona until r = Rc, where Rc = 1.5R. In the
latitudinal direction, our domain extends in colatitude from θ = 15◦ to 165◦ and
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in the azimuthal direction from φ = 0◦ to 90◦. We solve the following equations
of compressible magnetohydrodynamics,

∂A

∂t
= U × B + η∇

2A, (1)

D ln ρ

Dt
= −∇ · U , (2)

DU

Dt
= g − 2Ω0 × U +

1

ρ
(J × B − ∇p + ∇ · 2νρS) − D(r, θ), (3)

T
Ds

Dt
=

1

ρ
∇ · K∇T + 2νS

2 +
µ0η

ρ
J2 − Γcool, (4)

where the magnetic field is given by B = ∇ × A and thus obeys ∇ · B = 0 at
all times, µ0 is the vacuum permeability, η and ν are magnetic diffusivity and
kinematic viscosity, respectively, D/Dt = ∂/∂t + U · ∇ is the advective time
derivative, ρ is the density, and U is the velocity. The traceless rate-of-strain
tensor is given by

Sij = 1
2
(Ui;j + Uj;i) −

1
3
δij∇ · U , (5)

where semicolons denote covariant differentiation; see Mitra et al. (2009) for
details. Ω0 = Ω0(cos θ,− sin θ, 0) is the rotation vector, p is the pressure, K is
the radiative heat conductivity, and D(r, θ) describes damping in the coronal
region; see Section 2.2 for details. The gravitational acceleration is given by

g = −GMr/r3, (6)

where G is Newton’s gravitational constant, and M is the mass of the star. The
fluid obeys the ideal gas law, p = (γ − 1)ρe, where γ = cp/cv = 5/3 is the ratio
of specific heats at constant pressure and volume, respectively, and e = cvT is
the internal energy density.

2.1. Initial setup and boundary conditions

For the thermal stratification in the convection zone, we consider a simple ana-
lytical setup instead of profiles from solar structure models as in, e.g., Brun et
al. (2004). The hydrodynamic temperature gradient is given by

∂T

∂r
=

−|g|

cv(γ − 1)(m + 1)
, (7)

where m = m(r) is the radially varying polytropic index. We use Equation (7)
as the lower boundary condition for the temperature. This gives the logarithmic
temperature gradient ∇ (not to be confused with the operator ∇) as:

∇ =
∂ lnT

∂ ln p
=

1

m + 1
. (8)

The stratification is convectively unstable if ∇−∇ad > 0, where ∇ad = 1− 1/γ
is the adiabatic temperature gradient, corresponding to m < 1.5. We choose
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Figure 1. Initial stratification of temperature (dashed line), density (solid), pressure (dot–
dashed) and the Brunt-Väisälä frequency N2 = −(|g|/Hp)(∇−∇ad) (dash-triple-dotted) for
Run A5. The subscripts b refers to the values at r = 0.7 R. The dotted horizontal (vertical)
line denotes the value of zero (r = R).

m = 1 in the convectively unstable layer beneath the surface, r < R. The region
above r = R is stably stratified and isothermal due to a cooling term Γcool with
respect to a constant reference temperature in the entropy equation. The Γcool

term is r-dependent and causes a smooth transition to the nearly isothermal
layer representing the corona. The density stratification is obtained by requiring
the hydrostatic equilibrium condition to be satisfied.

The thermal conductivity follows from the constancy of the luminosity L
throughout the domain and is given by

K =
L

4πr2∂T/∂r
. (9)

To speed up the thermal relaxation processes, we apply shallower profiles, corre-
sponding to ρ ∝ T 1.4, for the thermal variables within the convectively unstable
layer. The value m = 1 is just used in the convection zone to determine the
thermal conductivity. In Figure 1 we show the initial non-convecting stratifica-
tion. The temperature gradient at the bottom of the domain is set to a constant
value, which leads to a constant heat flux into the domain. In the coronal part
the gradient goes smoothly to 0 by using an r dependent cooling function Γcool,
which is added to the entropy evolution Equation (4). The cooling term is given
by

Γcool = Γ0f(r)

(

c2
s − c2

s0

c2
s0

)

, (10)

where f(r) is a profile function equal to unity in r > R and smoothly connecting
to zero in r ≤ R, and Γ0 is a cooling luminosity chosen so that the sound speed
in the coronal part relaxes towards c2

s0 = c2
s (r = Rc). Whether the stratification
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is convectively unstable can be determined by the Brunt-Väisälä frequency:

N2 = |g|

(

1

γ

∂ ln p

∂r
−

∂ ln ρ

∂r

)

= −
|g|

Hp

(∇−∇ad) , (11)

where Hp = −∂r/∂ ln p is the pressure scale height. If N2 is negative, the
stratification is unstable.

We initialize the magnetic field as a weak, random, Gaussian distributed seed
field in the whole domain. In the coronal part the magnetic field diffuses after
a short time. We do not use a background coronal field, so the field is self-
consistently generated by the dynamo in the convective layer. We apply periodic
boundary conditions in the azimuthal direction over a small fraction of the full
circumference. For the velocity we take stress-free boundary conditions at all
other boundaries, i.e. no stellar wind can develop. As in WBM, the stress-free
boundary conditions prevent mass flux, but allow current helicity to cross the
boundary. Because no mass can escape, material will eventually fall back from
the boundary. Thermodynamic variables have zero gradients at the latitudinal
boundaries. We employ perfect conductor boundaries for the magnetic field at
the latitudinal and at the lower radial boundaries, and radial field conditions at
the outer radial boundary. The latter is motivated by the fact that in the Sun,
the solar wind pushes the magnetic field to open field lines and at a solar radius
of r = 2.0R till 2.5R the field lines are mostly radial (Levine, Schulz, and Frazier,
1982; Hoeksema, Wilcox, and Scherrer, 1982). This choice has been substantiated
by subsequent work of Wang and Sheeley (1992) as well as Schrijver and De
Rosa (2003). While this choice might still be too restrictive for coronal holes
and coronal streamers, and given also that our radial extent in most of the
simulations is smaller than r = 2R, we nevertheless chose the vertical field
boundary condition to satisfy our primary objective of letting magnetic helicity
leave the domain, crucial for the dynamo to operate. We, however, acknowledge
the fact that with this choice our description of the field in the exterior layer is
not the most realistic one.

To describe the corona as an isothermal extended cooling layer is a strong
simplification, for instance in that the temperature inside the coronal layer is
not higher than in the convection zone as in a real stellar corona, see Figure 1.
Besides the fact that a simple cooling layer is easy to handle numerically, we
emphasize the importance of facilitating comparison with previous models of
WBM. It can also be seen as a step towards studying effects that are not solely
due to a low plasma β corona, in which the magnetic field is strong compared
with the gas pressure (β = 2µ0p/B2). Indeed, given that our initial field is weak,
the plasma β is necessarily large in the outer parts. To understand the formation
and evolution of magnetic ejections, studies that isolate these effects, such as the
present one, may be important.

We use the Pencil Code1 with sixth-order centered finite differences in space
and a third-order accurate Runge-Kutta scheme in time; see Mitra et al. (2009)
for the extension of the Pencil Code to spherical coordinates. We use a grid
size of 128×128×64 mesh points (Runs A5 and Ar1), 256×256×128 (Run A5a).

1http://pencil-code.googlecode.com
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2.2. Velocity damping in the corona

Whether the solar corona rotates like a solid body or differentially coupled with
the photosphere is currently unclear. In recent work by Wöhl et al. (2010), where
SOHO-EIT data of the bright points in the solar corona were used to estimate
the rotation speeds, it was found that the corona rotates similarly as the small
magnetic features in the photosphere. Similar results have been obtained by
Badalyan (2010), where the coronal rotation has been measured by analyzing
the green FeXIV 530.3 nm line. The Author finds also variation pattern with the
activity cycle. However, the observations of the “boot” coronal hole by SKYLAB
suggested rigid rotation (Timothy et al., 1975). Recent work on coronal holes
by Lionello et al. (2005) claims that the rigid rotation is only apparent. The
magnetic field is sheared by the differential rotation, but the boundary of the
hole remains relatively unchanged, due to reconnection. Owing to the low plasma
β in the solar corona, the fluid motions are dominated by the magnetic fields
whose footpoints are anchored in the photosphere or even further down. So
the magnetic field might then be rigid enough to prevent differential rotation
of the solar corona. However, the observed bright points and other features in
the corona are strongly correlated with the magnetic field so they can give a
misleading picture about the global rotation of the corona.

In our simulations, the Coriolis force is included in the momentum equation
as a consequence of the rotation. In the solar corona the density is more than 14
orders of magnitude smaller than in the lower convection zone. Because of the
weak density stratification in our simulation, the Coriolis force in our coronal
part is too strong and can cause non-coronal effects like magnetorotational insta-
bility. To avoid this—at least for runs with rapid rotation—we apply a damping
function D(r, θ) in the momentum equation, which is given by

D(r, θ) =
1

τD

D0(r − R)U(r, θ), (12)

where

D0(r − R) = 1
2

[

tanh

(

r − R

w

)

+ 1

]

, (13)

with τD being the damping time and w the width of the transition layer from
convection zone to the coronal part. The overbar denotes φ averaging.

2.3. Units, nondimensional quantities, and parameters

Dimensionless quantities are obtained by setting

GM = ρb = pb = cp = µ0 = 1, (14)

where ρb is the density at r = 0.7R, and pb is the reference value of the pressure.
Below, we will describe the properties of the runs by the following dimensionless
parameters: fluid Reynolds number Re = urms/νkf , magnetic Reynolds number
ReM = urms/ηkf where kf = 2π/0.3R is the estimated wavenumber of the
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Table 1. Summary of the runs. Re is the fluid Reynolds number,

urms =
√

3/2(u2
r + u2

θ
) is the volume averaged rms velocity in the convection

zone normalized by the sound speed cs, PrM is the magnetic Prandtl number, Co is the
Coriolis number, and hrel is the maximum value of the relative kinetic helicity over each
hemisphere, as defined in Section 2.3.

ρb

ρs
and

ρb

ρt
give the density ratios of the bottom

of the convection zone to those at the surface and the top of the domain, respectively.
In the right-most column we denote if damping for velocity in the coronal part is used
(Y) or not (N), see Section 2.2.

Run Resolution urms/cs Re PrM
B2

rms

B2
eq

ρb

ρs

ρb

ρt
Co hrel D

A5 1282 × 64 0.0072 3.3 10 0.1-0.4 3.6 39 7 0.5 N

A5a 2562 × 128 0.0105 100 1 0.2 3.6 39 4.5 0.3 N

Ar1 1282 × 64 0.0040 38 1 1.5-5.5 3.6 39 50 0.3 Y

energy-carrying eddies and urms =
√

3/2(U2
r + U2

θ ) is the volume averaged
rms velocity in the convection zone (r ≤ R). The magnetic Prandtl number
PrM = ν/η = ReM/Re and the Coriolis number Co = 2Ω0/urmskf . In the
following analysis, we use φ averages, defined as F (r, θ, t)=

∫

F (r, θ, φ, t) dφ/2π.
Occasionally we also use time averages denoted by 〈.〉t. Time is expressed in

units of τ = (urmskf)
−1

, which is the eddy turnover time in the convection zone.
We measure the magnetic field strength as the rms value averaged over the
convection zone Brms, where we often normalize this value with the equipartition
value of the magnetic field defined by B2

eq = µ0(ρu2
rms)r≤R. The relative kinetic

helicity is hrel(r, t) = ω · u/ωrmsurms, where ω = ∇×u is the vorticity and ωrms

is its rms value inside the convection zone.

3. Results

3.1. Hydrodynamic phase of the simulations

After around 100 turnover times, the convection has reached saturation and we
find convection cells as typical patterns in the radial velocity just below the
surface. In our model, the dominant fluxes are radiative and convective fluxes in
the bulk of the convection zone and an (optically thin) cooling flux in the outer
(coronal) parts. The radiative and convective fluxes are defined as:

Frad = −K
∂T

∂r
, Fconv = cP ρu′

rT
′, (15)

where the averages are taken over θ and φ and the prime indicates fluctuations
about the respective mean quantity. In our present setup, however, the convective
flux reaches barely about 5% in the convection zone; see Figure 2 where we plot
the relevant contributions to the luminosity for Run A5. Above the surface the
cooling takes over to maintain an approximately isothermal atmosphere. The
total flux is constant except for small departures near the surface.
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Figure 2. Flux balance from Run A5. The different contributions are due to radiative diffusion
(solid black line), resolved convection (dotted) and flux correspond to the cooling (dash-dot-
ted). The red dotted line denote the zero and unity level, and the total luminosity through to
lower boundary by at thick black line.

Figure 3. Radial velocity (Ur) above the surface for r = 1.15, 1.25, 1.35 R for Run A5. Dark
blue shades represent negative and light yellow positive values.

To determine the degree of overshooting and penetration into the stably
stratified layers above the convection zone, we show in Figure 3 the radial
velocity above the surface at r = 1.15, 1.25, and 1.35R for Runs A5. At
low latitudes, there is very little radial penetration (velocity features are only
seen until r = 1.15R), while at higher latitudes the radial velocity pattern is
transmitted to all the way to 1.35R. This is not surprising in view of the Taylor–
Proudman theorem. Next, we plot in Figure 4 the rms values of all three velocity
components for Run A5. The amplitude of the radial velocity component falls
off the fastest. The latitudinal component also falls off with radius, but remains
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Figure 4. Root-mean-square values of Ur (dotted), Uθ (dashed), and Uφ (dash-dotted) as a
function of radius for Run A5. The solid line solid line shows the radial profile of our nominal

rms velocity, urms =
√

3/2(U2
r + U2

θ
).

about 3 times larger than the radial component. The longitudinal component,
on the other hand, increases with radius in a way that is compatible with rigid
body rotation with an angular velocity that is somewhat larger than the basic
rotation of the frame of reference.

The size of the convection cells depends strongly on the strength of rotation
and the degree of density stratification; see also Käpylä, Mantere, and Branden-
burg (2011). We plot the radial velocity Ur at r = 0.89R for Runs A5, A5a and
Ar1 in Figure 5. The Run A5 has a low fluid Reynolds number and therefore
the convection cells are large; see Table 1. The flow pattern shows clear ‘banana
cells’ as in previous work with comparable Coriolis parameter, cf. Käpylä et al.
(2011). A higher fluid Reynolds number and higher resolution, as in Run A5a,
allow the velocity field to form more complex structures. However, the banana
cells are still visible. If one now looks at a simulation with more rapid rotation
(Run Ar1, plotted in the right-most panel of Figure 5) with a Coriolis number of
Co = 50, the number of banana cells increases and they are more clearly visible
than in Run A5a. Note also that the radial velocity is now significantly reduced
at high latitudes inside the inner tangent cylinder.

In the Sun, differential rotation is an important element to produce the mag-
netic field structures observed at large scales, exhibiting a cyclic behavior over
time, as manifested by the sunspot cycle. To illustrate the differential rotation
profiles generated in the simulations, we plot the azimuthally averaged angular
velocity, Ω = Uφ/(r sin θ)+Ω0, for Runs A5, A5a, and Ar1 in the saturated state
of the simulation, see Figure 6. In the plot, we show isocontours of angular veloc-
ity with solid black lines. In the convection zone the contours of angular velocity
tend to be cylindrical, which is presumably connected with the occurrence of
banana cells and the absence of a strong latitudinal modulations of the specific
entropy (Brandenburg, Moss, and Tuominen, 1992; Miesch, Brun, and Toomre,
2006). The coronal part seems to rotate as a solid body outside the outer tangent
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Figure 5. Radial velocity (Ur) beneath the surface (r = 0.89 R) for Runs A5, A5a, Ar1. Dark
blue shades represent negative and light yellow positive values.

Figure 6. Differential rotation profiles Ω(r, θ) = Uφ/(r sin θ) + Ω0 for Runs A5, A5a, Ar1.
Dark blue shades represent low and light yellow high values, overplotted by the isocontours
with solid black lines.

cylinder (i.e., for r sin θ > R), while inside it some differential rotation occurs
also in the coronal part. In the convection zone between the inner and outer
tangent cylinders, the angular velocity is enhanced relative to that inside the
inner tangent cylinder (see the first and second panels of Figure 6), while in the
case of extremely rapid rotation this may actually be reversed.

In the three runs shown in Figure 6 the stratification in the whole domain
is just ρb/ρt = 40, which is rather small compared to the stratification of the
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Sun (ρb/ρt ∼ 1014). Therefore, the Coriolis force is acting much more strongly
in the coronal part of our simulation than in reality. In the convection zone, we
find quenching of convection due to rapid rotation. In Run A5, where Co = 7,
the lines of constant rotation rate are more radial than vertical and show super-
rotation, i.e., the equator rotates faster than the poles. As expected, this tends
to coincide with locations where the Reynolds stress in the radial direction is
negative (see, e.g., Rüdiger, 1980). However, the convection cells are rather big
and have a strong local influence on Uφ; see the corresponding discussion in
Dobler, Stix, and Brandenburg (2006). Note that the rms velocity in Run A5 is
two times smaller than in Run A5a, which has a higher resolution and higher
fluid and magnetic Reynolds numbers (Re = ReM = 100). Due to this, we find
clear super-rotation, even though the Coriolis number is slightly lower (Co = 4.5)
than what is realized in Run A5. In the third case, Run Ar1, where the rotation
is extremely rapid (Co = 50), we also find super-rotation, where the lines of
constant rotation rate are almost all vertical. In comparable work (Käpylä et
al., 2011; Käpylä, Mantere, and Brandenburg, 2011), super-rotation has been
found, when the Coriolis number was larger than 4. This is similar to our results
including a coronal part. In addition, there is a minimum of the rotation rate at
mid-latitudes and a polar vortex at high latitudes. Rotation profiles, which show
a comparable behavior, have been found by several groups (Miesch et al., 2000;
Elliot, Miesch, and Toomre, 2000; Käpylä et al., 2011; Käpylä, Mantere, and
Brandenburg, 2011). The region with the higher rotation rate near the equator
is limited to9 upper convection zone and even penetrate into the coronal part.
In Run Ar1 the velocity damping described in Section 2.2 is used. By comparing
the right-most panel of Figure 6 with damping to the left-most panels without
it, we can conclude that the damping does not make much of a difference to the
coronal velocity structures.

Simulations with randomly forced turbulence (e.g., WB,WBM) have shown
that the relative kinetic helicity hrel has a strong influence both on the generation
of large-scale magnetic fields and the ejection events. In WB and WBM, values of
hrel of order unity were achieved by using a forcing function with purely helical
plane waves. In the convection runs presented here, however, values of large
relative helicity, hrel = 0.5, are obtained (for Run A5), at least at certain radii.
In Figure 7, we present contour plots of azimuthally averaged relative helicity
in the meridional plane for Runs A5, A5a and Ar1. All three show the typical
sign rule of kinetic helicity under the influence of rotation, i.e. the northern
hemisphere has a predominantly negative sign and in the southern a positive
one. Close to the bottom of the convection zone, the sign changes, which has
earlier been reported by several authors both in Cartesian (e.g. Ossendrijver,
Stix, and Brandenburg, 2001) and spherical geometries (e.g. Miesch et al., 2000;
Käpylä et al., 2010). Only in Run Ar1 with rapid rotation, the behavior is not
that clear. The relative helicity is no longer confined to the convection zone,
but significant values occur also in the coronal region. The sign rule still holds
within the convection zone, while a more complicated sign behavior is visible in
the coronal part. The maximal values of the azimuthally averaged helicity are
around hrel = 0.3, occurring close to the surface. In Run A5a, the maximum
value is slightly higher and is located in the middle of the convection zone,
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Figure 7. Relative helicity hrel(r, t) = ω · u/ωrmsurms plotted for Runs A5, A5a, Ar1. Dark
blue shades represent negative and light yellow positive values.

although relatively high values are present in the coronal part as well. It is not
yet completely clear how high values of relative kinetic helicity can be achieved;
strong rotation tends to suppress it, whereas high stratification increases it. Its
exact role in generating coronal ejections is yet unclear.

3.2. Convective dynamo

The convective motions generate a large-scale magnetic field due to dynamo
action. The magnetic field grows first exponentially and begins then to affect the
velocity field. The effects of this backreaction can be subtle in that we found a 6%
enhancement of the rms velocity after saturation. The growth of the magnetic
field saturates after around 200 to 1000 turnover times, depending on the Coriolis
and Reynolds numbers. In the runs in Table 1, we obtain different dynamo
solutions for the saturated field.

In Figure 8 we show the time averaged azimuthal magnetic field Bφ for
Run A5, Ar1 and A5. Note that the φ component of the magnetic field is also
strong the coronal part and roughly antisymmetric about the equator. Further-
more we find an oscillation of the volume-averaged rms magnetic field in the
convection zone; see the left-hand panel of Figure 9 for Run A5. The growth
tends to be steeper than the decline, the period being around t/τ = 220. The
field reaches a maximum of 60% of the equipartition field strength, Beq, which
is comparable to the values obtained in the forced turbulence counterparts both
in Cartesian and spherical coordinates (WB,WBM). Comparing this with the
change of the kinetic energy, plotted as fluctuations of the rms velocity squared,
we find an anti-correlation with respect to the magnetic field oscillation. The
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Figure 8. Time averaged Bφ for Run A5, Ar1 and A5a. Dark blue shades represent negative
and light yellow positive values. The dotted horizontal lines show the location of the equator
at θ = π/2. The magnetic field is normalized by the equipartition value.

magnetic field is high (low), when the velocity is low (high). In the work by
Brun, Browning, and Toomre (2005), the authors interpret this behavior as the
interplay of the magnetic backreaction and the dynamo effect of the differential
rotation. Due to the Lorentz force a higher magnetic field strength leads to
quenching of the differential rotation. An increased magnetic field quenches
the Reynolds stress and thus lowers the differential rotation, which limits the
magnetic field. A weak magnetic field leads to stronger differential rotation.
Similar behavior has been observed also in previous forcing simulations (WBM).
This behavior is not seen as clearly in the large-scale magnetic field which shows
variations in strength, but not in sign. As shown in Figure 10 for Run A5, the Bφ

and Br have local maxima in time and in latitude, but the overall structure is
nearly constant in time. Even though the large-scale field structure is stationary,
the small-scale structures show an equatorward migration near the equator. The
reason for this is unclear, but meridional circulation does not seem to play a role
here.

In Run Ar1, the magnetic field reaches up to 5.5. times the equipartition value,
but does not show a periodic oscillation; see the right hand panel of Figure 9.
In comparable work (Käpylä et al., 2010), similar values for the field strength
were found. However, the rms velocity is also quenched, when the magnetic field
is high. Looking at Bφ and Br, plotted over time and latitude in Figure 11, the
large-scale magnetic field is similar to Run A5, that is constant in time without
any oscillation.

The azimuthal velocity Uφ versus time and latitude (Figure 12) shows minima
at the same times as the maxima of the magnetic field occur. In Run A5a, the
occurrence of strong magnetic fields suppresses the differential rotation. The
pattern of the azimuthal velocity is symmetric about the equator and shows an
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Figure 9. Phase relation of the magnetic field (B2
rms/B2

eq, solid black lines) and the velocity

field (urms(t)2/〈u2
rms〉t, dashed red lines) in the convection zone for Runs A5 (left panel) and

Ar1 (right). The velocity has been multiplied with a factor of 0.3 (left panel) and 3 (right),
respectively, and smoothed over 5 neighboring data points.

Figure 10. Variation of Bφ and Br in the convection zone at r = 0.9R for Run A5. Dark blue
shades represent negative and light yellow positive values. The dotted horizontal lines show
the location of the equator at θ = π/2. The magnetic field is normalized by the equipartition
value.

oscillatory behavior, which is not that clear in the large-scale magnetic field.
Comparing the two hemispheres, however, the field structure is antisymmetric.
In the Uφ plot in Figure 12, we find just one localized minimum, which coincides
with the low values of urms(t)

2/〈u2
rms〉t between t/τ = 2100 and 2400.

3.3. Coronal ejections

In the runs that we have been performed so far, and of which only three have
been discussed in this paper, only a small fraction of events can be identified with
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Figure 11. Variation of Bφ and Br in the convection zone at r = 0.9R for Run Ar1. Dark blue
shades represent negative and light yellow positive values. The dotted horizontal lines show
the location of the equator at θ = π/2. The magnetic field is normalized by the equipartition
value.

Figure 12. Variation of Uφ in the convection zone at r = 0.9R for Run A5 (left panel) and
Run Ar1 (right panel). Dark blue shades represent negative and light yellow positive values.
The dotted horizontal lines show the location of the equator at θ = π/2. The velocity is
normalized by the mean rms velocity in the convection zone.

actual coronal ejections similar to the ones seen in WB and WBM. Especially
the Runs A5 and Ar1 show some clear ejection events. There the magnetic field
emerges out of the convection zone and is ejected as an isolated structure. In
Figure 13 we have plotted the normalized current helicity, µ0R J · B/〈B2〉t,
as a time series for Run A5. At small scales, the current helicity density, J ·
B, is a good proxy for magnetic helicity density, A · B, and is, as opposed
to this quantity, gauge invariant. In addition the current helicity can be an
indicator of helical magnetic structures, which are believed to be present in
coronal mass ejections (Low, 1994, 2001; Plunkett et al., 2000; Régnier, Amari,
and Kersalé, 2002; Thompson, Kliem, and Török, 2011). Close to the equator
a bipolar structure emerges through the surface. The inner bulk has a positive
current helicity in Figure 13 represented by a yellow color and pushes an arc
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Figure 13. Time series of a coronal ejection near the equator (θ = π/2). The normalized

current helicity, µ0R J · B/〈B2〉t, is shown in a color-scale representation from different times;
dark blue represents negative and light yellow positive values. The dashed horizontal lines show
the location of the surface at r = R. Taken from Run A5.

with negative current helicity ahead of it; see Figure 14. Such bipolar ejections
have been identified in earlier work (WBM) and compared with the ‘three-part
structure’ of coronal mass ejection which is described in Low (1996). The three
parts consist of a prominence, which is similar to the bulk in our simulations, a
front with an arc shape corresponding to our arc and the cavity between these
two features. Even though the domain of the simulation is larger in the θ direction
than in WBM, the ejections are much smaller, which is actually closer to the
CMEs observed on the Sun. In the work of WBM the ejections have a size that
corresponds to about 500 Mm, whereas in this work they seems to have a size
corresponding to around 100 Mm if scaled to the solar radius. The difference
in size is mostly due to the more complex and fluctuating magnetic field in
convection runs than in forced turbulence, see more in Section 7. In the sequence
of images of Figure 14, an ejection near the equator reaches the outer boundary
and leaves the domain. To investigate the mechanism driving the ejection, we
look at the dynamics of the magnetic field in Figure 14, where field lines of the
azimuthally averaged mean field are shown as contours of r sin θAφ and colors
represent Bφ for the same time series. During the ejection, one can notice a
strong concentration of magnetic field lines that are directed radially outwards.
This concentration appears first beneath the surface and then emerges below the
current helicity structure and follows it up into the coronal part. Investigating
the direction of the magnetic field lines of the mean field in the time series
in Figure 14, an X-point can be found. In the first panel, at r = 1.07R and
θ = π/2 + 0.1, the magnetic field lines form a junction-like shape. The dotted
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Figure 14. Time series of a coronal ejection zoomed into the region of the ejection near the
equator (θ = π/2). The dashed horizontal lines show the location of the surface at r = R.

Left column: normalized current helicity, µ0R J · B/〈B2〉t. Middle column: magnetic field,

contours of r sin θAφ are shown together with a color-scale representation of Bφ. The contours

of r sin θAφ correspond to field lines of B in the rθ plane, where solid lines represent clockwise
magnetic field lines and the dashed ones counter-clockwise. Right column: density fluctuations

∆ρ(t) = ρ(t)− 〈ρ〉t. For all plots, the color-scale represents negative as dark blue and positive
as light yellow. Taken from Run A5.
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Figure 15. X-point-like structure in the rφ plane at the equator (θ = π/2) at t/τ=2204
zoomed into the ejection region. Contours of rAθ are shown together with a color-scale repre-
sentation of Bθ; dark blue stands for negative and light yellow for positive values. The contours
of rAθ correspond to field lines of B in the rφ plane. The dashed horizontal lines show the
location of the surface at r = R. Taken from Run A5.

line represents a counter-clockwise oriented field loop, so at the two corners of
the junction there are field lines with opposite signs. After around 14 turnover
times this “junction” has reconnected at the same position where the ejection is
detected. It appears that these two events are related to each other. Looking at
the magnetic field line in the rφ plane as in Figure 15, we can identify a structure
which has a shape similar to an X-point.

The ejection causes also a strong variation in the density. If the time-averaged
density profile is subtracted from instantaneous ones, the density fluctuations are
obtained. After removing the density stratification one obtains ∆ρ(t) = ρ(t) −
〈ρ〉t. We plot these density fluctuations, ∆ρ(t), in the right panel of Figure 14 to
visualize the effect of the ejection on the density. The density in the ejection is
much lower than in the rest of the coronal part. However, the density variations
are also associated with fluctuations in the specific entropy (∆s/cp ≈ 0.01),
which suggests that thermal buoyancy also plays a role. One interpretation could
be that the strong magnetic field reduces the density to achieve total pressure
equilibrium and the ejection rises partly because of magnetic buoyancy. Such an
effect is also seen by inspecting other ejections.

To characterize the emergence we plot different properties of the ejection in
the θφ plane; see Figure 16. The magnetic field shows a strong concentration
in the radial and azimuthal components. The concentration is associated with
a downflow and a low density region. We expect such a downflow as a result of
the less dense region emerging upwards. The entropy shows a high value in this
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Figure 16. Different properties of the ejection in the θφ plane at the surface (r = R) at
t/τ = 2204. Upper row, first panel: Contours of Ar are shown together with a color-scale
representation of Br; dark blue stands for negative and light yellow for positive values. The
contours of Ar correspond to field lines of B in the θφ plane, where solid lines represent
clockwise magnetic field lines and the dashed ones counter-clockwise. Second panel: The
arrows correspond to the UθUφ velocity field, the color-scale to Ur (legend as above). Third

panel: Color-scale representation of the density ρ; dark blue stands for low and light yellow
for high values. Lower row, first panel: Color-scale representation of the entropy s; dark blue
stands for low and light yellow for high values. Second panel: Color-scale representation of the
current density squared J2; dark blue stands for low and light yellow for high values. Third

panel: current helicity J · B, legend see Figure 13. Taken from Run A5.

region. In current density, we found two current sheets forming, which leads to
two current helicity regions of opposite sign.

When discussing coronal ejections, one is usually interested in the plasma
β parameter to characterize the corona. In our simplified coronal part, the
plasma β does not decrease with radius, but it stays rather high, which is due
to the low magnetic field strength, especially in the coronal part, even though
B2

rms/B2
eq = 0.1− 0.4 in the convection zone. The time averaged value is always

above 5 × 104, and is therefore not comparable with the values in the solar
corona, where the plasma β is very low because of the low density. There the
magnetic field can drag dense plasma from the lower corona to its upper part. In
our simulations the density stratification of the convection zone is much lower
compared to the Sun. Therefore, the density in the corona in our model is much
higher and is closer to the density of the photosphere or the chromosphere. The
rising magnetic flux tube has formed a low density region in its interior due to
the higher magnetic pressure. As the tube rises further into the coronal part, the
density inside the tube is still lower than that outside because the coronal density
is rather high in our model. The simplification of a high plasma β corona might
not be suitable to describe the mass flux of the plasma dragged by the magnetic
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Figure 17. Dependence of the dimensionless ratio µ0R J · B/〈B2〉t on time t/τ and radius r
in terms of the solar radius. The top panels show a narrow band in θ in the northern hemisphere
and the bottom ones in the southern hemisphere. We have also averaged in latitude from 4.1◦

to 19.5◦ (left panel) and 32.5◦ to 45.5◦ (right). Dark blue shades represent negative and light
yellow positive values. The dotted horizontal lines show the location of the surface at r = R.
Taken from Run A5

field in CME in the corona properly. However, the early works of Mikić, Barnes,
and Schnack (1988), Ortolani and Schnack (1993), and Wiegelmann (2008) have
shown that an isothermal force-free approach can describe the coronal magnetic
field and even plasmoid ejections rather well. Note that in those papers the
pressure gradient term was omitted, just like we did in the coronal part of WB.
How important this really is remains unclear, because this was not done in
WBM, which still showed ejections similar to those of WB. It would therefore
be useful to compare our present model with one where the pressure gradient
term is ignored in the coronal part, just like in WB.

The ejection seen in Figures 13 and 14 do not occur as a single events—they
rather show recurrent behavior. However, the periodicity is not as clear as in
previous work (WB,WBM).

For Run A5, for example, we observe around 5 ejections during a time interval
of about 1000 turnover times. A clearer indication for the recurrence of the ejec-
tions can be seen in Figure 17, where the normalized current density is averaged
over two narrow latitude bands in each hemisphere. The slope of structures in
the outer parts in these rt diagrams gives an indication about the ejection speed
Vej which turns out to be around one solar radius in 200–250 turnover times.
This translates to Vej/urms ≈ 0.1, which is somewhat less than the values 0.2–0.5
found for the simulations of WBM. However, the mechanism which sets the time
scale of ejections is at present still unclear.

Given that gravity decreases with radius, there is in principle the possibility
of a radial wind with a critical point at r∗ = GM/2c2

s (Choudhuri, 1998), which
would be r∗ = 9.3R in our coronal part. However, as we use closed boundary
conditions with no mass flux out of the domain, no such wind can occur in our
simulations. Using a boundary condition that would allow a mass flux in the
radial direction could change the speed and the ejection properties significantly.
Including a solar-like wind in model can have two major effects, which require a
much higher amount of computational resources. The radial variation of gravity
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applied in these simulations implies the presence of a critical point rather close
to surface of the convection. Therefore, if a wind were to develop, the resulting
velocity in the convection zone would be too high for a dynamo to develop; the
magnetic field would be blown out too quickly. Using instead a more realistic pro-
file for the solar wind with a position of the critical point around r∗ = 10R, the
corresponding density stratification would be too strong to be stably resolved.

4. Conclusions

In the present paper we have presented an extension of the two-layer approach of
WB and WBM by including a self-consistent convection zone into the model. We
find a large-scale magnetic field generated by the convective turbulent motion
in the convection zone. With the rotation, where the Coriolis number is larger
than 3, we obtain a differential rotation pattern showing super-rotation, i.e.
an equator rotating faster than the poles. The dynamo solutions we find are
different and some of them have a periodic oscillatory behavior, where the large-
scale magnetic field does not change sign; only the strength is varying. At the
maxima, the velocity is suppressed due to the backreaction via the Lorentz force.
Small-scale magnetic structures seem to show an equatorward migration near the
equator and a poleward one near the poles.

Using a convectively-driven dynamo complicates the generation of ejections
into a coronal part due to lower relative kinetic helicity. However, it was possible
to produce ejections in two of the runs. The shape and the bipolar helicity
structure is comparable with those of WBM. Due to the relatively high plasma
β in the outer parts of our model (compared with the solar corona), the ejections
produce local minima of density which are carried along and ejected out of the
domain. The ejections occur recurrently, but not clearly periodically, which is
similar to the Sun.

Note that our results have to be interpreted cautiously given the use of a
simplistic solar atmosphere. We neglect the effects of high temperature and
low plasma β. However, we feel that the mechanism of emergence of magnetic
structures driven by dynamo action from self-consistent convection may not
strongly depend on these two conditions. This suggestion has to be proven in
more detail in forthcoming work.

An extension of the present work would require a detailed parameter study
of cause and properties of the ejections. This also includes an advanced model
for the solar corona with a lower plasma β and more efficient convection, which
has a stronger stratification and is cooled by radiation. Another important as-
pect would be the generation of a self-consistent solar wind which supports and
interacts with the ejections.
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SOLA: sol_paper.tex; 15 March 2012; 14:14; p. 22



Ejections of magnetic structures

the High Performance Computing Center North in Ume̊a. Part of the computations have been

carried out in the facilities hosted by the CSC – IT Center for Science in Espoo, Finland, who

are financed by the Finnish ministry of education. This work was supported in part by the

European Research Council under the AstroDyn Research Project No. 227952, the Swedish

Research Council Grant No. 621-2007-4064, and the Academy of Finland grants 136189, 140970

(PJK) and 218159, 141017 (MJM).

References

Amari, T., Luciani, J. F., Mikic, Z., Linker, J., J. A.: 1999, Astrophys. J. 529, L49.
Antiochos, S. K., De Vore, C. R., Klimchuk, J. A.: 1999, Astrophys. J. 510, 485.
Archontis, V., Hood, A. W., Savcheva, A., Golub, L., DeLuca, E.: 2009, Astrophys. J. 691,

1276.
Badalyan, O. G.: 2010, New Astron. 135, 143.
Blackman, E. G., Brandenburg, A.: 2003, Astrophys. J. 584, L99.
Brandenburg, A., Moss, D., Tuominen, I.: 1992, Astron. Astrophys. 265, 328.
Brandenburg, A., Procaccia, I., Segel, D.: 1995, Phys. Plasma 2, 1148.
Brandenburg, A., Subramanian K.: 2005, Phys. Rep. 417, 1.
Brun, A. S., Browning, M. K., Toomre, J.: 2005, Astrophys. J. 629, 461.
Brun, A. S., Miesch, M. S., Toomre, J.: 2004, Astrophys. J. 614, 1073.
Cantiello, M., Braithwaite, J., Brandenburg, A, Del Sordo, F., Käpylä, P. J., Langer, N.: 2011,
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