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ABSTRACT

Rotating stellar convection transports angular momentum towards the equator, generating the characteristic equatorial acceleration of
the solar rotation while the radial flux of angular momentum is always inwards. New numerical box simulations for the meridional
cross-correlation 〈uθuφ〉, however, reveal the angular momentum transport towards the poles for slow rotation and towards the equator
for fast rotation. The explanation is that for slow rotation a negative radial gradient of the angular velocity always appears, which in
combination with a so-far neglected rotation-induced off-diagonal eddy viscosity term ν⊥ provides “antisolar rotation” laws with a
decelerated equator. Similarly, the simulations provided positive values for the rotation-induced correlation 〈uruθ〉, which is relevant
for the resulting latitudinal temperature profiles (cool or warm poles) for slow rotation and negative values for fast rotation. Observa-
tions of the differential rotation of slowly rotating stars will therefore lead to a better understanding of the actual stress-strain relation,
the heat transport, and the underlying model of the rotating convection.
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1. Introduction

Fast stellar rotation together with turbulent convection leave an
imprint on the stellar surface in the form of starspots (Solanki
2003; Strassmeier 2009). Nevertheless, numerous puzzles
remain for the quantitative description of the concerted action of
stellar rotation and magnetic-field amplification in cool late-type
stars. Surface differential rotation in its solar and antisolar form
is one of them. Direct numerical simulations and mean-field
models deal with the impact of Reynolds stresses and thermal
energy flows on angular momentum transport in rotating convec-
tion, which are thought to be responsible for the observed merid-
ional flows and differential rotation (e.g., Kitchatinov & Rüdiger
1999; Käpylä et al. 2011; Warnecke et al. 2013; Gastine et al.
2014; Featherstone & Miesch 2015). Kitchatinov & Olemskoy
(2011) showed that the meridional flow is distributed over the
entire convection zone in slow rotators but retreats to the con-
vection zone boundaries in rapid rotators. Mean-field models had
already predicted antisolar differential rotation for stars with fast
meridional circulation (Kitchatinov & Rüdiger 2004). Tracking
sunspot and starspot migration from spatially resolved solar and
stellar disk measurements (e.g., Künstler et al. 2015) provided us
with direct observations of differential rotation also in its antiso-
lar form (polar regions rotate faster than the equatorial regions)
meaning that models can now be tested against observations.

Differential rotation from spot tracking is no longer con-
fined to solar observations (for a summary of solar differen-
tial rotation tracing measurements see, e.g., Wöhl et al. 2010).
Tracking starspot migration from spatially resolved stellar
disk measurements (Doppler imaging) is a method to directly
study stellar surface differential rotation. After pioneering work
on image cross-correlation and smeared Doppler imaging by
Donati & Collier Cameron (1997), Barnes et al. (2005) con-

cluded that differential rotation decreases with effective temper-
ature and rotation. We have now a number of (active) stars where
differential rotation has been detected directly by means of
Doppler imaging. A differential rotation versus rotation-period
relationship from Doppler-imaging results was suggested by
Kővári et al. (2017) in the form δΩ ' π/100 rad/day, where δΩ
is the equator-pole difference of the angular velocity. Such a very
weak dependence of δΩ on the stellar rotation rate of dwarf stars
and giants was first predicted by Kitchatinov & Rüdiger (1999).

Space-based ultra-high-precision time-series photometry
allowed confirmation of the temperature dependency of sur-
face differential rotation for stars over a wide range in
the Hertzsprung-Russel diagram (Reinhold et al. 2013). The
observed δΩ only varied from 0.079 rad/day for cool stars (Teff =
3500 K) to 0.096 rad/day for Teff = 6000 K, which is a rather
weak variation of the observed differential rotation on the rota-
tion periods. Further, the hotter stars show stronger differential
rotation, peaking at the F stars where there is still a significant
convective envelope but only comparably weak magnetic activ-
ity. On the contrary, despite their small differential rotation M
stars appear to be highly dynamo-efficient (Gastine et al. 2013).
The overall rate of rotation plays an observationally biasing role
here because smaller stars rotate much faster than bigger ones.
Comparison of the large set of differential rotation measurements
from the Kepler mission with the theoretical predictions by the
Λ effect theory showed a fair agreement and gives us confidence
in applying the method to a particular star. However, the photo-
metric data do not contain information on the sign of differential
rotation (but see Reinhold & Arlt 2015 for possible exceptions)
and further spectroscopic time-series data are needed.

Benomar et al. (2018) report the asteroseismic detection of
surface rotation laws of solar-type stars with rather large equator-
pole differences of the angular velocity. Among the sample of
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40 stars there are up to 10 candidates for antisolar differential
rotation with a weak anticorrelation to rapid rotation. Asteroseis-
mology for the two solar analogs 16 Cyg A and B (which rotate
slightly faster than the Sun) provided positive equator-pole Ω
differences only slightly larger than the solar value (Bazot et al.
2019). We are therefore tempted to study the possibility of antiso-
lar rotation mainly for slowly rotating main sequence stars. Also,
the results of numerical simulations by Gilman (1977) and later
by Gastine et al. (2014), Brun & Palacios (2009), Guerrero et al.
(2013), Käpylä et al. (2014) suggest that stars with slow rotation
possess antisolar rotation laws. Recently, Viviani et al. (2018,
2019) reported 3D simulations of turbulent convection for rota-
tion rates of the solar value and faster. A transition of antisolar
to solar-like differential rotation happened for increasing solar
rotation rates (their Fig. 5 of the first paper). Simultaneously,
the geometry of the dynamo-excited large-scale magnetic field
became nonaxisymmetric. Even more important for the under-
standing of the differential rotation problem is that the radial
rotation shear also simultaneously changed from negative (“sub-
rotation”) to positive (“superrotation”). We demonstrate in the
present paper that indeed the subrotation Ω-profile may generi-
cally belong to the antisolar-rotation phenomenon of decelerated
equators.

We present numerical 3D box-simulations of outer stel-
lar convection zones subject to slow rotation with a fixed
Prandtl number. We then check if the resulting azimuthal cross-
correlations generate solar-type or antisolar-type rotation laws.
Our analytical differential rotation model is described in Sect. 2
while the simulations of the rotating convection boxes are pre-
sented in Sect. 3. The results in terms of the eddy viscosity tensor
for the angular momentum flow are given in Sect. 4 and they are
finally discussed in Sect. 5.

2. Differential rotation

In the following our theory of differential rotation in shellular
convection zones in the mean-field hydrodynamic approach is
briefly reviewed. This is mainly the theory of angular momentum
conservation including meridional flow and Reynolds stress, that
is,

∂

∂t
(ρr2 sin2 θΩ) + ∇ ·

{
ρr2 sin2 θΩU + ρr sin θ〈uφu〉

}
= 0, (1)

where ρ is the mass density, Ω the angular velocity, U is the
ensemble average of the fluid velocity, and u are the fluctuat-
ing parts of the flow. Equation (1) describes the contributions of
the two main transporters of angular momentum in (unmagne-
tized) rotating convection zones. The cross-correlations Qrφ =
〈ur(x, t)uφ〉(x, t) and Qθφ = 〈uθ(x, t)uφ〉(x, t) describe the radial
and latitudinal turbulent transport of angular momentum. In
the simplest case they can be parametrized via the diffusion
approximation,

Qrφ = −ν‖ sin θ
r∂Ω

∂r
, Qθφ = −ν‖ sin θ

∂Ω

∂θ
, (2)

with ν‖ being the positive eddy viscosity1. In this approximation
the two cross-correlations would vanish for uniform rotation.
If, therefore, under certain circumstances the cross-correlations
for uniform rotation do not vanish, the Boussinesq formulation
(2) can no longer be true and uniform rotation cannot form
a solution of Eq. (1) in rotating turbulence fields. Indeed the-
ory, simulation, and observation suggest that large-scale stellar

1 ν‖ = ν1 ≡ νT in the notation of Kitchatinov et al. (1994).

convection produces finite values for the two mentioned cross-
correlations, this phenomenon being referred to as the “Λ effect”.
For the Sun as a rapid rotator (compared with the typical correla-
tion times) Hathaway et al. (2013) indeed reported positive lati-
tudinal cross-correlations for the northern hemisphere and neg-
ative latitudinal cross-correlations for the southern hemisphere
in contradiction to the simple diffusion approximation (2) which
would provide opposite signs.

The symmetry properties of the cross-correlations Qrφ and
Qθφ differ from those of all other components of the one-point
correlation tensor,

Qi j = 〈ui(x, t)u j(x, t)〉, (3)

of a rotating turbulence field. While Qrφ and Qθφ are antisym-
metric with respect to the transformation Ω → −Ω, all other
correlations are not. The turbulent angular momentum transport
is thus odd in Ω while the other two tensor components – the
cross-correlation Qrθ included – are even inΩ. It is easy to show
that Qrφ is symmetric with respect to the equator if the averaged
flow is also symmetric. In this case, the component Qθφ is anti-
symmetric with respect to the equator. These rules can be vio-
lated if, for example, a magnetic field exists whose amplitudes
are different in the two hemispheres.

One can also show that isotropic turbulence even under the
influence of rotation does not lead to finite values of Qrφ and Qθφ.
With a preferred (radial) direction g, a tensor (εiklg j + ε jklgi)gkΩl
linear in Ω can be formed that has nonvanishing rφ and θφ
components. Rotating anisotropic turbulence is therefore able to
transport angular momentum. The spherical coordinates (r, θ, φ)
are used in this paper if the global system is concerned while
(x, y, z) represent these coordinates in a Cartesian box geometry.

For the zonal fluxes of angular momentum we write

Qrφ = −ν‖ sin θ
r∂Ω

∂r
+ ν⊥Ω2 sin2 θ cos θ

∂Ω

∂θ
+ ν‖V sin θΩ (4)

for the radial flux and

Qθφ = −ν‖ sin θ
∂Ω

∂θ
+ ν⊥Ω2 sin2 θ cos θ

r∂Ω

∂r
+ ν‖H cos θΩ (5)

for the meridional flux (Rüdiger 1989). Here the first terms come
from the Boussinesq diffusion approximation with ν‖ as the eddy
viscosity while V and H form the components of the Λ ten-
sor describing the angular momentum transport of rigidly rotat-
ing anisotropic turbulence. The terms with ν⊥ follow from the
fact that a viscosity tensor connects the Reynolds stress with the
deformation tensor2. The nondiffusive terms in the zonal fluxes
(4) and (5) can be written by means of the stress-strain tensor
relation Qiφ = −Ni j∇ jΩ with

N = r

 sin θ ν‖ − cos θ sin2 θΩ2ν⊥ 0
− cos θ sin2 θΩ2 ν⊥ sin θ ν‖ 0
0 0 0

 . (6)

The standard eddy viscosity ν‖ is positive and quenched by fast
rotation. On the other hand, Kitchatinov et al. (1994) showed
that for isotropic and homogeneous turbulence ν⊥ is positive.
We use ν⊥ to refer to the rotation-induced off-diagonal viscos-
ity term. The ratio ν⊥/ν‖ is of the dimension of the square of a
(correlation) time. The off-diagonal viscosity does not contribute
at the poles or at the equator. We note that this term in Eq. (5)
transforms a positive (negative) radial Ω gradient into positive

2 ν⊥ = ν2 in the notation of Kitchatinov et al. (1994).
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(negative) cross-correlations which – as the solution of the equa-
tion for the angular momentum conservation – finally leads to
accelerated (decelerated) equators. Hence, the rotation law of a
convection zone can never be only radius-dependent. After the
Taylor-Proudman theorem the isolines of the angular velocity Ω
tend to become cylindrical so that (say) slower rotation in the
depth of the convection zone is transformed to polar decelera-
tion (solar-type rotation). If, on the other hand, the inner parts
rotate faster than the outer parts then automatically the polar
regions rotate faster than the more equatorial regions (“antisolar
rotation”)3.

The expansion

V =
∑
l=0

V (l) sin2l θ sin θ, H =
∑
l=1

H(l) sin2l θ cos θ (7)

is used for the normalized Λ effect as in earlier papers. The
coefficients V (l) and H(l) describe the latitudinal profile of the
Λ effect. Quasilinear theory of rapidly rotating anisotropic tur-
bulent convection in the high-viscosity limit leads to −V (0) =
V (1) = H(1) > 0 (with V (l) = H(l) = 0 for l > 1) which implies
that Qrφ vanishes at the equator. For rigid rotation and in cylin-
dric coordinates −H sin θ cos θ is the angular momentum flow in
axial direction while the radial flux of angular momentum van-
ishes. The function H = H(Ω) is positive definite, meaning that
the angular momentum is exclusively transported from the poles
to equator parallel to the rotation axis. V (0) is always negative
(Rüdiger et al. 2005a).

Either of the above-mentioned theories and simulations of
the radial Λ effect lead to results of the form V ∝ − cos2 θ; that
is, V (0) < 0 and V = 0 at the equator. For slow rotation, V (l) and
H(l) with l > 0 become so small that a radial rotation law with
d log Ω

d log r
= V (0) (8)

results. Negative V (0) values generally lead to radial Ω profiles
with negative shear. In this case a meridional circulation is driven
by the centrifugal force which at the surface transports angular
momentum towards the poles (“counterclockwise flow”). Hence,
the equator rotates slower than the mid-latitudes which automat-
ically leads to an antisolar rotation law with cos θ∂Ω/∂θ < 0 at
the surface.

If neglecting meridional flow and ν⊥, the Reynolds stress (7)
maintains a latitude-dependent surface rotation law Ω = Ω(θ)
with

δΩ

Ω
= −

1
2

∑
l=1

(
d V (l) +

H(l)

l

)
(9)

for the pole-equator difference of Ω and with the normalized
thickness d of the convectively unstable layer with stress-free
boundary conditions. Under the assumption that V (l) = H(l) = 0
for l > 1, antisolar rotation would only be possible for (formally)
negative H(1).

Figure 1 illustrates the consequences of (9). The equation of
angular momentum is solved for a negative V (0). For this demon-
stration, meridional circulation and the off-diagonal viscosity ν⊥
have been neglected. The latitudinal Λ effect represented by H(1)

is varied from 1 to −1. Not surprisingly, a negative pole-equator
difference of the surface rotation law (solar-type differential rota-
tion) originates from H(1) = 1 (left panel). For H(1) = 0, a shel-
lular rotation profile results. Moreover, for H(1) = −1 the solar-
type surface rotation law changes to an antisolar-type surface

3 In the linear-in-Ω approximation by Kippenhahn (1963) a very simi-
lar mechanism is realized via meridional flow.
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Fig. 1. Color-coded contours of the rotation law due to the Λ effect with
V (0) = −1, V (1) = 0 and H(1) = 1 (left), H(1) = 0 (middle), H(1) = −1
(right). Meridional circulation and the off-diagonal eddy viscosity are
artificially suppressed. Positive H(1) values lead to solar-type equatorial
acceleration while negative H(1) values lead to antisolar rotation profiles
ν⊥ = 0.

rotation law with positive pole-equator difference (right panel).
At the same time the isolines of the angular velocity of rotation
change from disk-like (left panel) to cylinder-like (right panel).
This phenomenon is due to Reynolds stress rather than to Taylor-
Proudman theorem. In the left plot the angular momentum is
transported by the Λ effect along cylindrical planes to the equa-
tor causing the Ω-isolines to become disk-like. In the middle plot
the transport is radial, meaning that the Ω-isolines become shel-
lular and in the right plot the angular momentum is transported
toward the rotation axis generating cylindrical Ω-isolines.

The question remains as to how the meridional circulation
would modifiy these results if it were included. The above find-
ing that formally negative H easily produces antisolar rotation
profiles remains true if the meridional circulation due to radial
shear is also taken into account. The vorticity of the circulation
depends on the sign of the radial shear ∂Ω/∂r. At the surface
it flows towards the equator for superrotation and towards the
poles for subrotation (Kippenhahn 1963). On the other hand, a
circulation which flows towards the equator at the surface of the
convection zone (“clockwise flow”) produces differential rota-
tion with an accelerated equator while it produces a polar vor-
tex if it flows towards the poles (“counterclockwise flow”). One
takes from Fig. 2 (top) that for all choices of H(1) the merid-
ional circulation flows counterclockwise in the northern hemi-
sphere, reducing the equatorial acceleration (left panel) or ampli-
fying equatorial deceleration (right panel). Indeed, with circula-
tion included, the bottom left plot of Fig. 2 with H(1) > 0 repre-
sents a model for convection zones with solar-type rotation laws,
while the right panel of Fig. 2 with H(1) < 0 represents an anti-
solar rotation law. As the middle plots of Fig. 2 show, a merid-
ional circulation towards the poles even produces a weak anti-
solar rotation without any Λ effect. Typically, as a result of the
Taylor-Proudman theorem the isolines of the angular velocity Ω
(with meridional flow included) become cylindrical. This effect
appears in all plots of the bottom row of Fig. 2 but it is most
prominent for H(1) < 0 which even without circulation generates
cylinder-like Ω-isolines. Simultaneously, for rotation laws with
small ∂Ω/∂z the amplitude of the circulation sinks.

Several analytical studies of the Λ effect led to positive H(1),
that is, cos θQθφ > 0, for rigid rotation. Also, numerical sim-
ulations of rotating convection (Hupfer et al. 2006) or driven
anisotropic turbulence under the influence of solid-body rotation
(Käpylä 2019a) provide transport of angular momentum towards
the equator. Earlier, Chan (2001) found transport towards the
equator only for fast rotation while for slow rotation occasion-
ally the opposite result appeared. Simulations by Rüdiger et al.
(2005a) of rotating turbulent convection with much higher
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Fig. 2. Top: meridional circulation (given as its Reynolds numbers)
at the top (blue) and bottom (red) of the convection zone associated
with rotation laws shown in Fig. 1. Negative values at the surface of
the northern hemisphere indicate a circulation pattern directed towards
the poles (counterclockwise flow). Bottom: similar to Fig. 1 but with
meridional circulation included. Positive H(1) values lead to solar-type
acceleration of the equator (left panel). The (slow) counterclockwise
meridional flow H(1) = 0 leads to a weak antisolar-type equatorial decel-
eration (middle panel). The right panels of Figs. 1 and 2 formally
demonstrate the possibility of antisolar rotation laws to produce anti-
solar rotation laws with negative H(1).

resolution provided very small Qθφ for slow rotation and large
positive Qθφ for fast rotation. There seemed to be no hope, there-
fore, of explaining antisolar rotation laws for rotating stars with a
hydrodynamical theory of turbulent rotating flows. In this paper
numerical simulations of rotating convection in boxes are pre-
sented providing transport of angular momentum towards the
poles for slow rotation. This transport towards the poles, how-
ever, does not result from the Λ effect but is due to the rotation-
induced off-diagonal viscosity term ν⊥ in (5) in connection
with a subrotation law ∂Ω/∂r < 0 which appears for slow rota-
tion (Viviani et al. 2018). For solar-like convection zones with
rotation profiles quasi-uniform in radius and rotating with the
present-day solar rotation rate the ν⊥ term does not play any role.

3. Rotating convection

We perform simulations for convection with a fixed ordinary
Prandtl number Pr = ν/χ with χ being the thermal diffusion
coefficient. For stellar material the heat conductivity χ strongly
exceeds the other diffusivities. Also the Roberts number q = χ/η
with η as the microscopic magnetic resistivity is therefore much
larger than unity. For numerical reasons we must work with the
approximate surface value Pr = 0.1.

The simulations are done with the Nirvana code by Ziegler
(2002), which uses a conservative finite volume scheme in Carte-
sian coordinates. The length scale is defined by the depth of
the convectively unstable layer. Periodic boundary conditions
are formulated in the horizontal plane. The upper and lower
boundaries are impenetrable and stress-free. The initial state is
convectively unstable in a layer that occupies half of the box.
Convection sets in if the Rayleigh number exceeds its critical
value. In the dimensionless units the size of the simulation box
is 2 × 6 × 6 in the x, y, and z directions, respectively. The lower
and upper boundaries of the unstably stratified layer are located
at x = 0.8 and x = 1.8, respectively. The numerical resolution is
128×384×384 grid points. The stratification of density, pressure,

Fig. 3. Convection of slow rotation (Ω = 1, solid lines) and fast rota-
tion (Ω = 30, dashed lines). Left: Qrr, right: Qθθ (red lines) and Qφφ

(blue lines). The gray-shaded area indicates the convectively unsta-
ble part with the vertical dashed line showing its center and d is the
thickness of the convectively unstable layer. Correlations Qrr, Qθθ, and
Qφφ and rotation rates Ω are given in code units. The volume-averaged
turbulence intensity is u2

rms = 28 and the co-latitude θ = 45◦.

and temperature is piecewise polytropic, similar to that used in
Rüdiger et al. (2012). The density varies by a factor five over the
depth of the box, hence the density scale height is 1.2.

The code solves the momentum equation,

ρ

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + ∇ · τ + ρg − 2ρΩ × u, (10)

where ρ is the mass density, u the gas velocity, p the gas pressure,
g gravity, andΩ the rotation vector, in a corotating Cartesian box
under mass conservation,

∂ρ/∂t + ∇ · (ρu) = 0, (11)

together with the energy equation,

∂e
∂t

+ ∇ · ((e + p) u) = ∇ · (u · τ − Fcond) , (12)

where Fcond = −κ∇T being the conductive heat flux with the
heat conduction coefficient κ. The viscosity tensor is

τi j = ρν
(
ui, j + u j,i −

2
3

(∇ · u)δi j
)
, (13)

and the total energy e = U + ρu2/2 is the sum of the thermal
and kinetic energy densities. An ideal gas with a constant mean
molecular weight µ = 1 is considered, hence

U =
R

γ − 1
ρT (14)

for the thermal energy density with R the gas constant and
γ = cp/cv = 5/3. The gas is kept at a fixed temperature at the
bottom and a fixed heat flux at the top of the simulation box.
More technical details including the boundary conditions have
been described in Rüdiger et al. (2012).

Figure 3 gives the auto-correlations of the one-point corre-
lation tensor (3) for convection that is subject to slow and fast
rotation. The colatitude is θ = 45◦. As expected, the hori-
zontal turbulent intensities are identical for slow rotation while
the vertical intensity 〈u2

r 〉 has the dominating value. The latter
is strongly suppressed by faster rotation (the radial turbulence
intensity is reduced by more than a factor of two for Ω = 30)
while there is almost no visible suppression of the horizontal
components.

For driven turbulence in a quasilinear approximation we have

Qi j = Q(0)
i j − ε (2Ω2δi j −ΩiΩ j) (15)
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with

ε =
2

15

∫ ∞

0

∫ ∞

−∞

ν2k4 − 3ω2

(ω2 + ν2k4)2 E dkdω

= −
2

15

∫ ∞

0

∫ ∞

−∞

ω

(ω2 + ν2k4)2

∂

∂ω

(
(ω2 + ν2k4)E

)
dkdω (16)

(Rüdiger 1989). The sign of the expressions follows from the
form of the positive-definite spectrum E(k, ω) and is obviously
negative for white-noise spectra but is positive for spectral func-
tions which are sufficiently steep in ω. Also for the maximally
steep spectrum such as δ(ω) the ε is positive, describing a rota-
tional quenching of the turbulence intensities.

The vector of rotation at the colatitude θ is Ω =
Ω(cos θ,− sin θ, 0), so that Eq. (15) gives

〈u2
r 〉 = 〈u(0)2

r 〉 − εΩ
2(2 − cos2 θ). (17)

The rotational quenching of the radial turbulence intensity
shown in Fig. 3 can be described by Eq. (17) with ε > 0.

Another direct consequence of (15) is the existence of the
cross-correlation of radial and latitudinal fluctuations, that is,

Qrθ = −ε Ω2 sin θ cos θ, (18)

which vanishes at the poles and the equator by definition. In a
sense, the correlation Qrθ mimics the turbulent thermal conduc-
tivity tensor. If a radial temperature gradient exists, a negative
cross-correlation Qrθ organizes heat transport to the poles result-
ing in a meridional circulation towards the equator at the surface
(Rüdiger et al. 2005b).

For positive ε, the rotation-induced cross-correlation Qrθ after
(18) becomes negative. This theoretical result complies with the
results of numerical simulations (Käpylä 2019a). The expres-
sion (15) only describes the rotational influence on isotropic
turbulence. Rüdiger et al. (2005a) also considered the rotational
influence on turbulence fields which are anisotropic in the radial
direction with the general result that Qrθ is always less than zero
(northern hemisphere) for steep spectra E and for all rotation rates.

Hereafter we switch to the Cartesian box coordinates x
(representing the radial coordinate r), y (representing the colat-
itude θ), and z (representing the azimuth φ) hence Qrθ → Qxy,
Qrφ → Qxz and Qθφ → Qyz. The shears r∂Ω/∂r and ∂Ω/∂θ trans-
late into dUz/dx and dUz/dy, respectively. After averaging over
the horizontal (yz) plane the relations (4) and (5) turn into

Qxz = −ν‖
dUz

dx
+ ν‖V sin θΩ (19)

and

Qyz = ν⊥Ω2 cos θ sin θ
dUz

dx
+ ν‖H cos θΩ. (20)

The cross-correlation (18) completed by the viscosity term
becomes

Qxy = −εΩ2 sin θ cos θ − ν‖
dUy

dx
· (21)

The attention is focused here on the influence of the diffusion
terms in Eqs. (20) and (21) in order to probe the existence of
the viscosities ν‖ and ν⊥ by simulations. To this end the rotation
rates are assumed to be so small that the nondiffusive terms in the
relations (20) and (21) for the cross-correlations are negligible.
The second term in Eq. (21) is positive for outwards decreas-
ing meridional flow Uy, for example. Consequently, the cross-
correlation Qxy should be positive for slow rotation and negative

for rapid rotation, changing the sign at a certain value of the
parameter Ω (which denotes the angular velocity Ω of the rota-
tion in code units). One finds such a transition from positive to
negative values for 5 < Ω < 10 in the simulations given in Fig. 4.
The coincidence suggests that indeed the influence of viscosity
terms in the expressions of cross-correlations may lead to direc-
tion reversals of transport terms as a function of rotation.

Without rotation, all cross-correlations vanish. For the slow-
rotation models with Ω = 1, already finite values appear (left
plots in Figs. 4 and 5). At the radial boundaries the correlations
Qxy and Qxz vanish by the boundary condition (ux = 0) but the
horizontal cross-correlation Qyz remains finite; it is always pos-
itive at the top and bottom of the unstable box which indicates
H > 0 if a possible mean circulation Uz were maximal or mini-
mal at the top or bottom of the convection box (as it is, see Fig. 6).

The correlation Qxy for slow rotation is positive so that heat
is transported towards the equator. At the same time the hori-
zontal correlation Qyz assumes negative values. Independent of
the rotation rates and for both hemispheres we find the general
result that always QxyQyz < 0. The simulations therefore show
that angular momentum flux to the equator (poles) is always
accompanied by heat transport to the poles (equator). Some-
where between Ω = 5 and Ω = 10 the cross-correlations Qxy
and Qyz change their signs becoming negative (Qxy) and positive
(Qyz) for fast rotation. These signs are well-known from the ana-
lytical expressions derived for driven turbulence for fast rotation.
In this case, the angular momentum is transported inward as well
as toward the equator by the convection; in other words, it flows
along cylindric surfaces.

For increasingly fast rotation the amplitudes of the negative
Qxy are increasing, contrary to Qyz which decrease. This is a
basic difference for the two cross-correlations. We note that for
the transformation Ω → −Ω the correlations Qyz change their
sign which is not the case for Qxy. The reason is that Qxy is even
in the rotational rate Ω while the horizontal cross-correlation Qyz
is odd.

4. The eddy viscosities

Equation (18) neglects the influence of a possible radial shear
dUy/dx of a meridional flow. The question is whether large-scale
mean flow characterizes the simulation box as in the simulations
of Chan (2001) and Käpylä et al. (2004), which could be used to
calculate the eddy viscosities after relations (20) and (21). The
mean flows in the box have been calculated for slow rotation.
The top panel of Fig. 6 gives flows in the meridional direction
and the bottom panel gives zonal flows in the azimuthal direc-
tion. The basic rotation there has been varied from Ω = 1 to
Ω = 10 and the Prandtl number is fixed at Pr = 0.1. The follow-
ing estimate concerns the first example with Ω = 1 with the
cross-correlation Qxy ' 0.01u2

rms (from Fig. 5) and the shear
δUy/δx ' −0.2 (from Fig. 6). The standard eddy viscosity
ν‖ ' 1.5 in code units for slow rotation. The microscopic vis-
cosity of the model in the same units is ν = 6 × 10−3, meaning
that ν‖/ν ' 240. One finds very similar values for Ω = 3.

The dimensionless eddy viscosity αvis, following

ν‖ = αvisτcorru2
rms, (22)

may also be introduced which is often assumed in turbulence
research to be αvis ' 0.3. To find the correlation time τcorr an
auto-correlation analysis as done by Küker & Rüdiger (2018) is
necessary. The result is τcorr ' 0.1 in code units, hence αvis . 0.5
which indeed is of the expected order of magnitude.
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Fig. 4. Snapshots of the radial profiles of the radial cross-correlation Q̃xy (normalized with the volume-averaged rms velocity, u2
rms) for Ω = 1,

Ω = 3, Ω = 5, and Ω = 10 (from left to right). The sign changes for Ω > 5 from positive to negative. The convectively unstable part of the box is
gray-shaded. Pr = 0.1, θ = 45◦.

Fig. 5. Similar to Fig. 4 but for the horizontal cross-correlation Q̃yz. The sign changes for Ω > 5 from negative to positive.

Figure 6 also demonstrates that the negative shear dUy/dx
is always accompanied by a negative shear dUz/dx of the zonal
flow, hence dUy/dx · dUz/dx > 0. Transformed to the global
system, this means that a subrotating shell generates a counter-
clockwise circulation where the fluid drifts towards the poles at
the surface. This type of flow pattern has already been described
in the text below Eq. (8). On the other hand, the existence of
Uz allows us to estimate the off-diagonal viscosity after Eq. (20)
with H ≈ 0 for Ω = 1 or Ω = 3 to ν⊥ ' 0.05, hence ν⊥/ν‖ ' 0.03
in code units or ν⊥/ν‖ ' 3τ2

corr in physical units.
Following Eqs. (19) and (20), the shear dUz/dx contributes to

the cross-correlations Qxz and Qyz. Because of its negativity, the
viscosity term in (19) is positive, meaning that the actual value
of |V | is even larger than indicated by Qxz from the simulations.

4.1. Rotation-induced off-diagonal eddy viscosity

The same radial velocity gradient appears in the expression for the
horizontal cross-correlation in a higher order of the rotation rate.
The two viscosities in (20) can be expressed by the integrals

ν‖ =
2

15

∫ ∞

0

∫ ∞

−∞

ν3k6

(ω2 + ν2k4)2 E dkdω (23)

and

ν⊥ =
48

105

∫ ∞

0

∫ ∞

−∞

νk2ω2(5ν2k4 − 3ω2)
(ω2 + ν2k4)4 E dkdω (24)

(Rüdiger 1989). The ratio ν⊥/(τ2
corrν‖) is a dimensionless number.

Not surprisingly, the first integral is positive definite. On the other
hand, the second integral is positive for all other monotonously
decreasing spectra in line with the following expression:

ν⊥ =
48

105

∫ ∞

0

∫ ∞

−∞

νk2ω2

(ω2 + ν2k4)2(
E

ω2 + ν2k4 − 2
∂

∂ω

ωE
ω2 + ν2k4

)
dkdω. (25)

The integral in (24) is even positive for spectra of the white-
noise-type. To demonstrate this point, we evaluate the frequency

integral with uniform E. As∫ ∞

−∞

ν3k6ω2(5ν2k4 − 3ω2)
(ω2 + ν2k4)4 dω =

π

8
, (26)

here the ν⊥ is also positive. We note however that very steep
spectra such as δ(ω) lead to vanishing ν⊥ which explains the
absence of antisolar rotation laws in the calculations based
on that turbulence model (Kitchatinov et al. 1994). It therefore
seems likely that observations of slowly rotating stars with a
decelerated equator question the application of turbulences with
δ-like frequency spectra in stellar convection models. The steep-
est frequency spectra describe fluids in the high-viscosity limit
(low Reynolds number of the fluctuations) while spectra with
a quasi-white-noise behavior belong to the inviscid approxima-
tion (large Reynolds number of the fluctuations). As the corre-
sponding integral for the standard eddy viscosity (23) is π/2 one
obtains, for rather flat spectra, ν⊥/ν‖ ∝ Re2τ2

corr with Re the
Reynolds number of the fluctuations.

If ν⊥ > 0 and dUz/dx < 0 (see Fig. 6) negative contributions
to the horizontal cross-correlation are produced. The existence of
the off-diagonal viscosity ν⊥ therefore explains the resulting neg-
ativity of the cross-correlation Qyz for slow rotation. The result
confirms the above finding that all values of Qyz are positive at
the top and bottom boundaries where the mean shear vanishes.
For faster rotation, the increasing positive values of H overcom-
pensate the negative contribution from the radial shear of Uz
which becomes increasingly unimportant. The transition from
negative to positive Qyz happens in Fig. 5 for Ω ' 5. Figure 6
also demonstrates that the shear dUz/dx grows for Ω < 5 and
overcompensates the positive H term producing the obtained
negative cross-correlations.

As the mechanisms of the null crossings of Qxy and Qyz are
different, the values for the critical Ω should not be identical for
both cases.

4.2. Antisolar rotation

Models are considered of such slow rotation that H ' 0
and a (negative) V (0) exists in addition to the rotation-induced
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Fig. 6. Radial profiles of the meridional flow Uy (top) and zonal flow Uz (bottom) in the convective box (shaded). The parameters are Ω = 1, Ω = 3,
Ω = 5, and Ω = 10 (from left to right). The circulation is always counterclockwise and the rotation is decelerated at the surface (subrotation).
Pr = 0.1, θ = 45◦.

off-diagonal viscosity ν⊥. The existence of the latter has been
indicated by the simulations for the horizontal cross-correlation
Qyz shown in Fig. 5. This leads to functions of H that are for-
mally negative (for slow rotation) for which Fig. 1 demonstrates
the appearance of antisolar rotation laws. The off-diagonal ele-
ment ν⊥ is varied in Fig. 7 from ν⊥ = −0.5 (left panel) through
zero (middle panel) to ν⊥ = 0.5 (right panel). For the models
shown in the top row of the plots the resulting meridional cir-
culation is artificially suppressed. One finds that negative V (0)

always produces rotation laws with negative radial shear, which
in combination with positive ν⊥ leads to antisolar rotation and
vice versa. Hence, for V (0)ν⊥ < 0 the equator rotates slower
than the polar regions and just this condition is the result of the
given numerical simulations. One could also demonstrate that
the equator is accelerated for V (0)ν⊥ > 0 (not shown). The exam-
ples in the top row of Fig. 7 (from left to right) clearly demon-
strate how the completion of the eddy viscosity tensor with the
(positive) off-diagonal term ν⊥ leads to the cylindric geometry
of the Ω isolines required by the Taylor-Proudman theorem –
without any help of the meridional circulation.

If the associated meridional flow is also allowed to trans-
port angular momentum, as done in the models in the second
row of Fig. 7, all the Ω isolines become cylindrical in accor-
dance with the Taylor-Proudman theorem and the antisolar rota-
tion law is only modified but not destroyed. We note how in the
middle panels only the meridional circulation changes the type
of the rotation law from uniform on spherical shells to cylindri-
cal with respect to the rotation axis. The circulation cells always
flow counterclockwise towards the poles at the surface.

From the comparison of Figs. 1 and 7 one finds that antiso-
lar rotation profiles result both for positive ν⊥ in common with
subrotation and/or for negative H(1). The latter can be excluded
with numerical experiments where Uy and Uz are artificially sup-
pressed mimicking the existence of strict solid-body rotation.
This has been confirmed by Pencil Code4 simulations which
use the same setup as in Käpylä (2019b).

4 http://github.com/pencil-code
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Fig. 7. Similar to Fig. 1 but for slow rotation (V (0) = −1 and V (1) =
H(1) = 0). The off-diagonal viscosity term varies from ν⊥ = −0.5 (left),
through ν⊥ = 0 (middle), to ν⊥ = 0.5 (right). Meridional circulation is
suppressed (top) or it is included as in Fig. 2 (bottom). For positive ν⊥
the rotation is always antisolar without and with meridional circulation.
The circulation is counterclockwise. We note the negative radial shear
below the equator in all cases.

Figure 8 presents the results from a slowly rotating run
with and without mean flows. The used Coriolis number Co =
Ωd/πurms ≈ 0.25 corresponds to Ω ' 4 in Nirvana code units.
We find that the signs of Qxy and Qyz change when the mean
flows are suppressed. This is consistent with a dominating con-
tribution from turbulent viscosity in Qxy and the rotation-induced
off-diagonal viscosity term in Qyz in accordance with the above
theory. Without shear the cross-correlation Qyz (equivalent to
Qθφ in spherical coordinates) is always positive and the cross-
correlation Qxy (equivalent to Qrθ in spherical coordinates) is
always negative.
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Fig. 8. Normalized off-diagonal Reynolds stresses as indicated by the
legends from runs with (upper panel) and without (below) horizontal
mean flows. The vertical dotted lines indicate the top and bottom of the
convection zone.

Let us finally note that the negative value of Qxz (equivalent
to Qrφ in spherical coordinates) clearly becomes more negative
in the case where the shear is suppressed, indicating a strong
contribution from the term involving ν‖; see Eq. (19).

5. Discussion

The cross-correlations Qrθ, Qrφ, and Qθφ of the fluctuating veloc-
ities in a rotating turbulence are playing basic roles in under-
standing the rotation laws of stars with outer convection zones.
Briefly, the tensor component Qrθ transports thermal energy in
the latitudinal direction (“warm poles”) while Qrφ and Qθφ trans-
port angular momentum in the radial and meridional directions.
For driven turbulence of a uniformly rotating density-stratified
medium (stratified in the radial direction) the correlations fulfill
simple sign rules independent of the rotation rate: it is Qrθ < 0,
Qrφ < 0 and Qθφ > 0, taken always in the northern hemi-
sphere. In physical quantities this means that thermal energy is
transported to the poles while the angular momentum is trans-
ported inward and towards the equator. The resulting warm
poles drive a clockwise meridional circulation (northern hemi-
sphere) which together with the positive Qθφ transports angu-
lar momentum towards the equator. Hence, if the convection
zone can be modelled by driven turbulence under fast global
rotation then the resulting surface rotation law will always be
of the solar-type. The simultaneous solution of the Reynolds
equation and the corresponding energy equation provides rota-
tion profiles, meridional circulation patterns, and pole–equator
temperature differences that are relatively close to observations
(Kitchatinov & Rüdiger 1999; Küker et al. 2011). The results
are similar for all rotation rates and the number of tuning param-
eters is low.

There are, however, increasing observational indications
for the existence of antisolar rotation laws where the equa-

tor rotates slower than the polar regions. The results of obser-
vations (Metcalfe et al. 2016) as well as of numerical simu-
lations (Gastine et al. 2014; Viviani et al. 2018) suggest that
stars with slow rotation possess antisolar rotation laws. Based
on photometric Kepler/K2 data from the open cluster M 67,
Brandenburg & Giampapa (2018) also argue in favor of the
appearance of antisolar rotation laws for slow rotators with large
Rossby numbers.

We assume that because of the often-stated positivity of
the function H the horizontal Λ effect always transports angu-
lar momentum towards the equator in favor of an accelerated
equator. If, however, a rotation law with a negative radial gradi-
ent exists then the rotation-induced off-diagonal components of
the eddy viscosity tensor such as ν⊥ transport angular momen-
tum towards the poles in favor of a polar vortex (“antisolar”).
This also implies that a strictly radius-dependent rotation law
Ω = Ω(r) can never exist in (slowly) rotating convection zones.
After the Taylor-Proudman theorem, the rotation will tend to
produce z-independent rotation laws, and therefore a negative
radial shear of the angular velocity is always accompanied by
slightly accelerated polar regions.

We compute the cross-correlations Qrθ, Qrφ, and Qθφ from
numerical simulations of convection in a rotating box. The aver-
aging process concerns the horizontal planes, hence only radial
shear can influence the cross-correlations (see Eqs. (4), (5),
and (21)). For fast rotation, the well-known findings of positive
Qθφ and negative Qrθ, Qrφ are reproduced (northern hemisphere).
For slow rotation however, the signs of both Qrθ and Qθφ change
almost simultaneously, meaning that the angular momentum is
now transported to the poles and the heat is transported to the
equator. The resulting warm equator leads to a counterclockwise
meridional circulation which also transports the angular momen-
tum to the poles. The new signs of the quantities Qrθ and Qθφ

may thus lead to antisolar differential rotation.
This behavior, however, is due to the appearance of large-

scale flows in zonal and in meridional directions. The zonal flow
Uz mimics differential rotation with negative radial gradient. Via
the off-diagonal viscosity in Eq. (5), for positive ν⊥, a negative
contribution to Qθφ leads to overcompensation of the positive
but small values of H. A similar effect happens for Qrθ where
the negative radial gradient of Uy combined with the positive
eddy viscosity ν‖ provides positive contributions to the negative
cross-correlation (18).

From the associated numerical values, with Eq. (22) ν‖ can
be calculated leading to ν‖/ν ' 240, or to the (reasonable)
dimensionless quantity αvis . 0.5. The simulations for slow rota-
tion lead to ν⊥/ν‖ ' 3τ2

corr for the ratio of the rotation-induced
off-diagonal viscosity term and the standard diagonal eddy
viscosity.

We also studied the influence of the radial shears of the large-
scale flows Uy and Uz on the cross-correlations Qxy and Qyz with
numerical experiments where the Uy and Uz can artificially be
suppressed. In these cases, for all rotation rates, the calculations
led to negative Qxy and positive Qyz. Without large-scale flows
the analytical results are confirmed, namely that always Qrθ < 0
and Qθφ > 0 for the northern hemisphere formulated in spheri-
cal coordinates. For slow rotation, both signs are changed if the
large-scale radial shear flows are allowed to back-react.

In summary, we show that a so-far neglected rotation-
induced off-diagonal eddy viscosity term combined with rota-
tion laws with a negative radial gradient (subrotation, as existing
in slowly rotating stars) is able to produce differential rotation of
the antisolar type. This result complies with the (numerical) find-
ings of Viviani et al. (2018) that negative radial Ω-gradients and
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antisolar differential rotation are closely related. Therefore, if
new observations confirm the existence of decelerated equators
at the surface of slowly rotating stars then we shall better under-
stand the nature of the active eddy viscosity tensor and also the
underlying turbulence model in its low- or high-viscosity limit.

Acknowledgements. PJK acknowledges the computing resources provided by
CSC – IT Center for Science, who are administered by the Finnish Ministry
of Education; of Espoo, Finland, and the Gauss Center for Supercomputing for
the Large-Scale computing project “Cracking the Convective Conundrum” in
the Leibniz Supercomputing Centre’s SuperMUC supercomputer in Garching,
Germany. This work was supported in part by the Deutsche Forschungsgemein-
schaft Heisenberg programme (grant No. KA 4825/1-1; PJK) and the Academy
of Finland ReSoLVE Centre of Excellence (grant No. 307411; PJK).

References
Barnes, J. R., Collier Cameron, A., Donati, J. F., et al. 2005, in 13th Cambridge

Workshop on Cool Stars, Stellar Systems and the Sun, eds. F. Favata, G. A. J.
Hussain, & B. Battrick, ESA Spec. Publ., 560, 95

Bazot, M., Benomar, O., Christensen-Dalsgaard, J., et al. 2019, A&A, 623,
A125

Benomar, O., Bazot, M., Nielsen, M. B., et al. 2018, Science, 361, 1231
Brandenburg, A., & Giampapa, M. S. 2018, ApJ, 855, L22
Brun, A. S., & Palacios, A. 2009, ApJ, 702, 1078
Chan, K. L. 2001, ApJ, 548, 1102
Donati, J.-F., & Collier Cameron, A. 1997, MNRAS, 291, 1
Featherstone, N. A., & Miesch, M. S. 2015, ApJ, 804, 67
Gastine, T., Morin, J., Duarte, L., et al. 2013, A&A, 549, L5
Gastine, T., Yadav, R. K., Morin, J., Reiners, A., & Wicht, J. 2014, MNRAS,

438, L76
Gilman, P. A. 1977, Geophys. Astrophys. Fluid Dyn., 8, 93

Guerrero, G., Smolarkiewicz, P. K., Kosovichev, A. G., & Mansour, N. N. 2013,
ApJ, 779, 176

Hathaway, D. H., Upton, L., & Colegrove, O. 2013, Science, 342, 1217
Hupfer, C., Käpylä, P. J., & Stix, M. 2006, A&A, 459, 935
Käpylä, P. J. 2019a, A&A, 622, A195
Käpylä, P. J. 2019b, A&A, submitted [arXiv:1812.07916]
Käpylä, P. J., Korpi, M. J., & Tuominen, I. 2004, A&A, 422, 793
Käpylä, P. J., Mantere, M. J., & Brandenburg, A. 2011, Astron. Nachr., 332, 883
Käpylä, P. J., Käpylä, M. J., & Brandenburg, A. 2014, A&A, 570, A43
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