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ABSTRACT

Aims. The aim of this study is to explore the magnetic and flow properties of fully convective M dwarfs as a function of rotation
period Prot and magnetic Reynolds ReM and Prandlt numbers PrM.
Methods. We performed three-dimensional simulations of fully convective stars using a star-in-a-box set-up. This set-up allows global
dynamo simulations in a sphere embedded in a Cartesian cube. The equations of non-ideal magnetohydrodynamics were solved with
the Pencil Code. We used the stellar parameters of an M5 dwarf with 0.21 M� at three rotation rates corresponding to rotation
periods (Prot) of 43, 61, and 90 days, and varied the magnetic Prandtl number in the range from 0.1 to 10.
Results. We found systematic differences in the behaviour of the large-scale magnetic field as functions of rotation and PrM. For the
simulations with Prot = 43 days and PrM ≤ 2, we found cyclic large-scale magnetic fields. For PrM > 2, the cycles vanish and the field
shows irregular reversals. In the simulations with Prot = 61 days for PrM ≤ 2, the cycles are less clear and the reversal are less periodic.
In the higher PrM cases, the axisymmetric mean field shows irregular variations. For the slowest rotation case with Prot = 90 days, the
field has an important dipolar component for PrM ≤ 5. For the highest PrM the large-scale magnetic field is predominantly irregular
at mid-latitudes, with quasi-stationary fields near the poles. For the simulations with cycles, the cycle period length slightly increases
with increasing ReM.
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1. Introduction

Magnetic fields in stars have been studied both theoretically
and through observations, particularly magnetic fields of solar-
type main-sequence stars (e.g., Brun & Browning 2017, and ref-
erences therein). M dwarfs are low-mass main-sequence stars
whose structure undergoes a transition from fully convective
for masses up to 0.35 M� to solar-like (radiative core and con-
vective envelope) for higher masses (Chabrier & Baraffe 1997).
These stars are found to be magnetically active, as shown by
Saar & Linsky (1985), who confirmed surface magnetic activity
for M dwarfs with infrared measurements. Today there is consid-
erable observational evidence of magnetic activity in M dwarfs
that shows magnetic field strengths reaching up to a few kG (see
Kochukhov 2021, and references therein). Because of the lack of
a tachocline, the shear layer between the radiative and convec-
tive zones, fully convective M dwarfs are quite interesting from
the point of view of dynamo theory and can help us to understand
whether a tachocline has a strong impact on the dynamo itself. In
this context, Wright & Drake (2016) report that the X-ray emis-
sion of fully and partially convective stars follows a similar trend
to the Rossby number Ro = Prot/τ, which is the ratio of the rota-
tion period to convective turnover time, and which measures the
rotational influence on convective flows. It was found that the

X-ray emission increases with decreasing Ro until Ro ≈ 0.1,
and for smaller Ro the X-ray luminosity saturates. Newton et al.
(2017) find a similar trend, a saturated relation between the chro-
mospheric Hα emission and Ro for rapidly rotating M dwarfs
and a power-law decay of the Hα emission with increasing Ro
for slowly rotating stars. The transition occurs near Ro = 0.2. In
addition, Doppler and Zeeman-Doppler inversions have revealed
that fully convective M dwarfs often show large-scale magnetic
fields, and that for rapid enough rotation both dipolar and mul-
tipolar fields are possible (e.g., Morin et al. 2010; Kochukhov
2021). Furthermore, Klein et al. (2021) found that the fully con-
vective star Proxima Centauri has a seven-year activity cycle.

Numerical simulations of stars are performed to achieve
a better understanding of their magnetic fields, dynamos, and
convection as functions of stellar parameters and dimension-
less quantities, such as the magnetic Prandtl number, which
is an intrinsic property of the fluid defined by the ratio of
kinematic viscosity ν to resistivity η of the plasma. Some
authors have performed magnetohydrodynamic (MHD) simula-
tions of fully convective M dwarfs, which are particularly inter-
esting for comparison with solar dynamo models due to the
lack of a tachocline. The first simulations of fully convective
M dwarfs were presented by Dobler et al. (2006), who used a
star-in-a-box model to study dynamos as a function of rotation.
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They found predominantly quasi-static large-scale magnetic
fields and typically weak or anti-solar differential rotation with
faster poles and a slower equator. These simulations had rel-
atively modest fluid and magnetic Reynolds numbers as well
as low density-stratification. Browning (2008) presented simu-
lations of fully convective M dwarfs using the anelastic mag-
netohydrodynamic equations, considering a spherical domain
extending from 0.08 to 0.96 stellar radius, finding magnetic
fields with significant axisymmetric components. In simula-
tions without magnetic fields, the differential rotation is strong
and solar-like with a fast equator and slow poles; instead,
in magnetic simulations it is reduced, and tends to a solid-
body rotation in the most turbulent magnetohydrodynamical
simulations. A similar numerical approach was taken in the
studies of Yadav et al. (2015, 2016) who used strongly strat-
ified anelastic simulations to study the coexistence of dipo-
lar and multipolar dynamos and cyclic solutions at relatively
slow rotation corresponding to a parameter regime similar to
that of Proxima Centauri. More recently, Brown et al. (2020)
performed simulations of fully convective M dwarfs in spher-
ical coordinates, finding cyclic hemispheric dynamos in their
models.

The rotation period of the star Prot is a key factor that
determines the nature of the dynamo. This is evidenced by
observational studies of M dwarfs, which demonstrate that with
decreasing Prot the magnetic field strength increases (e.g.,
Wright et al. 2018; Reiners et al. 2022). This has also been
shown numerically by Käpylä (2021), among others, who used
a star-in-a-box model for fully convective stars and found
increasing magnetic field strength with decreasing rotation
period. Furthermore, different dynamo modes were found as a
function of rotation in that work. Slowly rotating stars have
mostly axisymmetric and quasi-steady large-scale magnetic
fields; for intermediate rotation the large-scale field is mostly
axisymmetric and cyclic, and for rapid rotation the large-scale
magnetic fields are predominantly non-axisymmetric with a
dominant m = 1 mode. As demonstrated by Käpylä (2021),
the large-scale dynamo is sustained even in the absence of a
tachocline. In this sense, the work by Bice & Toomre (2020)
using simulations of early M dwarfs supports the hypothesis
that the tachocline is not necessary for producing strong toroidal
magnetic fields, although it may generate stronger fields in faster
rotators.

In this paper we present three-dimensional MHD simula-
tions of fully convective M dwarfs with the star-in-a-box set-
up described in Käpylä (2021; see also Dobler et al. 2006). Our
main goal is to explore the dependence on dimensionless param-
eters, in particular the magnetic Prandtl and Reynolds num-
bers PrM and ReM, which are crucial ingredients for dynamos
and plasmas in general. High and low values of PrM and ReM
lead to very different dynamo scenarios; at low PrM the mag-
netic energy is dissipated in the inertial range of the flow and
small-scale dynamo action requires a much higher ReM to be
excited (e.g., Schekochihin et al. 2007; Käpylä et al. 2018). On
the other hand, stars typically have PrM � 1 and ReM � 1
(e.g., Augustson et al. 2019; Jermyn et al. 2022). Our simula-
tions were performed for a set of rotation periods Prot ranging
from 43 to 90 days, the latter being the rotation period of Prox-
ima Centauri, and for values of PrM and ReM ranging from 0.1
to 10 and 21 to over 1400, respectively, which is the numeri-
cally feasible range for this type of simulation. The methods and
model are described in Sect. 2, while the description and analysis
of the results is provided in Sect. 3. We discuss the conclusions
in Sect. 4.

2. Methods

We used the star-in-a-box model described in Käpylä (2021),
which is based on the set-up of Dobler et al. (2006). The model
allows dynamo simulations of entire stars. In the present scenario
we used a sphere of radius R that is enclosed in a cube with
side 2.2 R. We solved the induction, continuity, momentum, and
energy conservation equations:

∂A
∂t

= u × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt

= −∇Φ −
1
ρ

(∇p − ∇ · 2νρS + J × B) − 2Ω × u + f d, (3)

T
Ds
Dt

=
1
ρ

[
H − C − ∇ · (Frad + FSGS)

]
+ 2νS2 +

µ0ηJ2

ρ
. (4)

Here A is the magnetic vector potential; u is the velocity field;
B = ∇× A is the magnetic field; µ0 is the magnetic permeability
of vacuum; η is the magnetic diffusivity; ρ is the density of the
fluid; D/Dt = ∂/∂t + u · ∇ is the advective derivative; T is the
temperature; Φ is the gravitational potential; p is the pressure; ν
is the kinematic viscosity; s is the specific entropy; J = ∇×B/µ0
is the current density; Ω = Ω0ẑ is the rotation vector (with Ω0
being the mean angular velocity of the star and ẑ the unit vector
along the rotation axis); S is the traceless rate-of-strain tensor

Si j =
1
2

(ui, j + u j,i) −
1
3
δi j∇ · u, (5)

where the commas denote differentiation; H and C describe
heating and cooling; and f d describes the damping of flows out-
side the star (see Käpylä 2021, for more details). The radiative
flux is given by

Frad = −K∇T, (6)

where K corresponds to the Kramers opacity law, where its
power law exponents are the same as in Käpylä (2021). The
subgrid-scale (SGS) entropy flux FSGS damps fluctuations near
the grid scale, but contributes only negligibly to the net energy
transport. It is given by

FSGS = −χSGSρ∇s′, (7)

where χSGS is the SGS diffusion coefficient, s′ = s − s̄t is the
entropy fluctuation, and s̄t is a running temporal mean of the
entropy. We note that the SGS flux used here does not include
the temperature T . This form of the SGS flux is appropriate if the
entropy equation has been solved, whereas the T factor appears
in the SGS term if the corresponding energy equation has been
solved (Rogachevskii & Kleeorin 2015).

The simulations were run with the Pencil Code1
(Brandenburg 2021), which is a high-order finite-difference code
for solving partial differential equations with primary applica-
tions in compressible astrophysical magnetohydrodynamics.

2.1. Dimensionless parameters

Each simulation is characterised by various dimensionless num-
bers. These parameters are usually order of magnitude ratios of
various terms in the MHD equations or of the corresponding
timescales.
1 https://github.com/pencil-code
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The effect of rotation relative to viscosity is measured by the
Taylor number, given by

Ta =
4Ω2

0R4

ν2 . (8)

The Coriolis number is a measure of the influence of rotation on
the flow

Co =
2Ω0

urmskR
, (9)

where urms is the volume-averaged root mean square velocity
and kR = 2π/R is the scale of the largest convective eddies.
Another definition of the Coriolis number used in other studies
(e.g., Brown et al. 2020; Käpylä 2021) is based on the vorticity
and considers the local length scale. This is defined by

Coω =
2Ω0

ωrms
, (10)

where ωrms is the volume averaged rms vorticity, withω = ∇×u.
The fluid and magnetic Reynolds numbers, SGS and magnetic
Prandtl numbers, and SGS Péclet numbers are defined as

Re =
urms

νkR
, ReM =

urms

ηkR
, (11)

PrSGS =
ν

χSGS
, PrM =

ν

η
, Pe =

urms

χSGSkR
. (12)

2.2. Physical units and non-dimensional quantities

We modelled a main-sequence dwarf star (M5) with the same
stellar parameters as in Dobler et al. (2006) and Käpylä (2021).
The mass, radius, and luminosity of the star are M? = 0.21 M�,
R? = 0.27 R�, and L? = 0.008 L�, respectively. We used an
enhanced luminosity approach (Käpylä et al. 2020) to reduce the
gap between the thermal and dynamical timescales, such that
fully compressible simulations are feasible. This implies that
the results need to be scaled suitably for comparison with real
stars. The conversion factor between the rotation rate, length,
time, velocity, and magnetic fields in the simulation and in phys-
ical units are the same as those used by Käpylä (2021; see
their Appendix A). Non-dimensional quantities were obtained
by using the stellar radius as the unit of length [x] = R. Time is
given in terms of the free-fall time τff =

√
R3/GM, the unit of

velocity is [U] = R/τff , and magnetic fields are given in terms

of the equipartition field strength Beq = 〈

√
µ0ρU2〉, where 〈.〉

stands for time and volume averaging.

3. Results

We present a set of 3D MHD simulations in the slow to inter-
mediate rotation regime with global Coriolis number Co rang-
ing between 3.1 and 12.9 (see Table 1). The rotation rates are
Ω̃ = 1.0, 0.7, and 0.5 (which correspond to Prot = 43, 61, and
90 days) in sets A, B, and C, respectively. The magnetic Prandtl
number PrM varies between 0.1 and 10 in set A and between 0.5
and 10 in sets B and C.

3.1. Flow properties

3.1.1. Differential rotation and meridional circulation

The averaged rotation rate in cylindrical coordinates is given by

Ω($, z) = Ω0 + Uφ($, z)/$, (13)

where $ = r sin θ is the cylindrical radius and where the overbar
denotes azimuthal averaging. The averaged meridional flow is
given by

Umer($, z) = (U$, 0,Uz). (14)

The angular velocity varies with depth and also with latitude. A
way to quantify this is by measuring the amplitude of the radial
and latitudinal differential rotation with

∆
(r)
Ω

=
Ωtop,eq −Ωbot,eq

Ωtop,eq
, (15)

∆
(θ)
Ω

=
Ωtop,eq −Ωtop,θ

Ωtop,eq
, (16)

where the subscripts top, bot, eq, and θ respectively correspond
to R = 0.9R, r = 0.1R, θ = 0 ◦, and an average of Ω for latitudes
+θ and −θ in spherical coordinates.

The values of ∆
(r)
Ω

and ∆
(θ)
Ω

are listed in Table 2. Positive val-
ues of ∆

(r)
Ω

indicate solar-like differential rotation. We find that
∆

(r)
Ω

has a tendency to decrease with increasing ReM, which is
equivalent to an increasing PrM (second column of Table 2).
Figure 1 shows ∆

(r)
Ω

as a function of ReM for sets A (circles),
B (squares), and C (triangles) confirming the decreasing trend
as a function of ReM. The red circles show simulations without
dynamos (A8 and A12) and low magnetic Reynolds numbers,
where ∆

(r)
Ω

is higher. This reduction or quenching of the dif-
ferential rotation by magnetic fields especially at high ReM has
been shown by various simulations, for example in Brun et al.
(2004), Schrinner et al. (2012), and Käpylä et al. (2017). The
differential rotation profiles for three representative simulations
A1, A16, and A8 are shown in Fig. 2. The rotation profile
in run A1 is solar-like; the profile is similar in the rest of
the simulations with PrM ≤ 2. In run A16 with PrM = 10
the amplitude of the latitudinal differential rotation is positive,
whereas the amplitude of the radial differential rotation is neg-
ative since the angular velocity does not change considerably
with depth at the equator. The middle panel of Fig. 2 shows
that the rotation rate at the equator is in fact higher than aver-
age almost everywhere and the negative value of ∆

(r)
Ω

is due
to the slower-than-average rotation only very near the surface.
Therefore, the differential rotation is solar-like. Another method
for classifying the rotation profile (solar-like or anti-solar) is
to use the mean rotation profile at the equator, which, as indi-
cated in Käpylä (2023), can help prevent erroneous conclu-
sions. Furthermore, the profiles in Fig. 2 are symmetric with
respect to the equator, as in the other simulations performed in
this work.

The global Coriolis number (see Eq. (9)) in the current sim-
ulations ranges from 3.1 to 13. All of our runs show solar-like
differential rotation, which is consistent with Käpylä (2021),
where the shift from anti-solar to solar-like differential rota-
tion occurs for Coriolis number between 0.7 and 2. This is also
consistent with the simulations of spherical shell convection by
Viviani et al. (2018), which show that the transition occurs at
around Co = 3 (see Table 5 in their work). More recently, Käpylä
(2023) found that the transition from anti-solar to solar-like dif-
ferential rotation depends on the subgrid-scale Prandtl number
(PrSGS), such that solar-like differential rotation is more difficult
to obtain at high PrSGS than at PrSGS ≤ 1. In this work all the
simulations have PrSGS ≤ 1.

A82, page 3 of 11



Ortiz-Rodríguez, C. A., et al.: A&A 678, A82 (2023)

Table 1. Simulation parameters.

Sim Ω̃ ũrms Brms [Beq] PrM PrSGS ReM Re Co Coω Ta Pe Grid

A1 1.0 0.022 0.92 0.1 0.04 55 549 9.2 1.4 4.00 × 1010 22 2003

A2 1.0 0.021 0.94 0.1 0.04 79 788 9.3 1.2 8.30 × 1010 32 2883

A3 1.0 0.021 0.91 0.2 0.08 54 272 9.3 1.6 1.00 × 1010 22 2003

A4 1.0 0.022 0.81 0.5 0.20 54 109 9.3 1.9 1.60 × 109 22 2003

A5 1.0 0.022 0.75 0.7 0.28 55 78 9.2 2.0 8.16 × 108 22 2003

A6 1.0 0.020 0.91 0.7 0.28 75 107 9.7 2.0 1.69 × 109 30 2003

A7 1.0 0.021 0.84 0.9 0.20 54 108 9.4 1.9 1.60 × 109 22 2003

A8(∗) 1.0 0.030 − 0.2 0.28 22 108 6.6 1.8 8.16 × 108 30 2003

A9 1.0 0.022 0.71 0.5 0.28 39 78 9.3 2.1 8.16 × 108 22 2003

A10 1.0 0.020 0.89 1.0 0.20 105 105 9.7 1.9 1.60 × 109 21 2003

A11 1.0 0.020 0.88 1.0 0.28 73 73 9.9 2.1 8.16 × 108 20 2003

A12(∗) 1.0 0.028 − 1.0 0.40 70 70 7.2 2.0 4.00 × 108 28 2003

A13 1.0 0.019 0.81 2.0 0.40 99 50 10.1 2.3 4.00 × 108 20 2003

A14 1.0 0.017 1.20 5.0 0.40 208 42 12.1 2.4 4.00 × 108 17 2003

A15 1.0 0.017 1.16 7.0 0.40 300 42 12.0 2.5 4.00 × 108 17 2003

A16 1.0 0.016 1.24 10.0 0.40 390 39 12.9 2.5 4.00 × 108 16 2003

B1 0.7 0.024 0.68 0.5 0.40 84 167 5.9 1.1 1.51 × 109 62 2003

B2 0.7 0.024 0.74 1.0 0.40 168 168 5.8 1.0 1.51 × 109 68 5763

B3 0.7 0.022 0.88 2 0.40 315 158 6.2 1.0 1.51 × 109 64 5763

B4 0.7 0.020 1.03 5 0.40 714 143 6.9 1.1 1.51 × 109 58 5763

B5 0.7 0.019 1.02 10 0.40 1360 135 7.2 1.2 1.51 × 109 55 5763

C1 0.5 0.025 0.80 1.0 0.20 256 256 3.9 0.6 1.60 × 109 51 5763

C2(∗) 0.5 0.032 − 0.5 0.40 41 21 3.1 0.9 1.00 × 108 32 2003

C3 0.5 0.026 0.53 1.0 0.40 67 67 3.8 1.1 1.00 × 108 27 2003

C4 0.5 0.024 0.85 2 0.40 337 168 4.1 0.7 7.71 × 108 68 5763

C5 0.5 0.021 1.17 5 0.40 750 150 4.7 0.7 7.71 × 108 60 5763

C6 0.5 0.020 1.02 10 0.40 1419 142 4.9 0.8 7.71 × 108 51 5763

Notes. Summary of the simulations. From left to right the columns correspond to the following: Sim is the simulation name, Ω̃ = Ωτff is the
normalised rotation rate, ũrms = urms/(GM/R)1/2 is the normalised root main square velocity, Brms is the root main square magnetic field strength
in units of the equipartition strength, PrM and PrSGS are the magnetic and subgrid-scale Prandtl numbers, ReM and Re are the magnetic and fluid
Reynolds numbers, Co and Coω are the global and local Coriolis numbers, Ta is the Taylor number, and Pe is the Péclet number. The last column
indicates the grid resolution. (∗) Runs with no dynamo.

Simulations A8, A12, and C2 do not have dynamos, and they
are considered to be kinematic cases. The right panel of Fig. 2
displays the rotation profile for simulation A8. It demonstrates
that a faster-than-average angular velocity spans a broader latitu-
dinal range and a narrower radial range when compared to dynamo
simulations. This depicts the influence of a magnetic field on dif-
ferential rotation. In the regime PrM < 2 of our simulations,
the meridional flow is composed of multiple small cells, while
in the regime PrM ≥ 2 the pattern is composed of two to three
large cells which are symmetric with respect to the equator. The
maximum values of the normalised meridional flow amplitude,
Ũ

rms

mer = (GM/R)−1/2(U
2
$ + U

2
z )1/2, in the cases shown in Fig. 2

correspond to Ũ
max

mer = 0.009, 0.005, and 0.023 for simulations
A1, A16, and A8, respectively. The rms value of the meridional
velocity is given in the fifth column of Table 2. In the simulations
with no dynamo, A8, A12, and C2 (A8 in right panel in Fig. 2),
the meridional circulation also exhibits similar multiple patterns,
which are also symmetric with respect to the equator.

3.1.2. Power spectra and kinetic helicity

To characterise the convective flows we calculated the nor-
malised kinetic energy power spectra (e.g., Viviani et al. 2018;

Navarrete et al. 2022) from

Pkin =
Ekin,`∑
` Ekin,`

, (17)

where Ekin,` is the kinetic energy of the spherical harmonic
degree `, which is calculated from the decomposition of the
radial velocity field at the surface into spherical harmonics.
Figure 3 shows Pkin as a function of ` for selected simulations.
For the simulations with lower rotation rates and large-scale
dynamos, the convective power is slightly shifted towards lower
`, with peaks between 16 and 20 for set A, 12 and 15 for set B,
and 7 and 15 for set C. In simulations with no dynamo, the peak
is at considerably larger scales at ` = 4. This demonstrates the
suppression of large-scale convective flows by magnetic fields.
This is similar to results from recent solar-like simulations that
suggest that suppression of large-scale convection may be impor-
tant to maintain a solar-like rotation profile in the Sun (e.g.,
Hotta et al. 2022; Käpylä 2023). Furthermore, the large-scale
convective amplitudes are in general higher in cases with slower
rotation, in agreement with linear theory (Chandrasekhar 1961)
and various earlier simulations (Featherstone & Hindman 2016;
Viviani et al. 2018; Navarrete et al. 2022).

Kinetic helicity, defined as H = ω = ·u is an important
component in the operation of the dynamo. It is a proxy of the

A82, page 4 of 11



Ortiz-Rodríguez, C. A., et al.: A&A 678, A82 (2023)

Table 2. Amplitudes of the temporally and azimuthally averaged angu-
lar velocity Ω(r, θ).

Sim ∆
(r)
Ω

∆
(θ)
Ω

(60◦) ∆
(θ)
Ω

(75◦) Ũ
rms

mer

A1 0.13 0.038 0.044 1.8 × 10−3

A2 0.13 0.035 0.044 1.2 × 10−3

A3 0.13 0.039 0.046 1.9 × 10−3

A4 0.15 0.044 0.054 1.9 × 10−3

A5 0.17 0.052 0.063 2.0 × 10−3

A6 0.12 0.037 0.049 1.2 × 10−3

A7 0.14 0.041 0.052 1.9 × 10−3

A8(∗) 0.28 0.100 0.100 2.5 × 10−3

A9 0.18 0.060 0.069 2.0 × 10−3

A10 0.14 0.036 0.048 1.9 × 10−3

A11 0.12 0.036 0.046 1.9 × 10−3

A12(∗) 0.23 0.092 0.091 2.4 × 10−3

A13 0.11 0.037 0.046 1.2 × 10−3

A14 0.020 0.018 0.019 1.3 × 10−3

A15 0.015 0.023 0.025 1.3 × 10−3

A16 −0.006 0.019 0.017 1.1 × 10−3

B1 0.067 −0.006 −0.020 1.4 × 10−3

B2 0.165 0.073 0.093 2.4 × 10−3

B3 0.100 0.062 0.076 1.8 × 10−3

B4 0.036 0.051 0.057 1.6 × 10−3

B5 −0.029 0.041 0.043 1.1 × 10−3

C1 0.122 0.104 0.122 1.8 × 10−3

C2(∗) 0.087 0.067 0.060 6.7 × 10−4

C3 0.008 −0.043 −0.069 1.4 × 10−3

C4 0.052 0.095 0.101 1.7 × 10−3

C5 −0.013 0.086 0.078 1.6 × 10−3

C6 −0.058 0.064 0.063 2.0 × 10−3

Notes. From left to right the columns correspond to the following: the
name of the simulation; the amplitudes of the radial and latitudinal
differential rotation at 60 ◦ and 75 ◦ according to Eqs. (15) and (16),
respectively; and the rms value of the meridional flow speed Ũ

rms

mer =

(GM/R)−1/2(U
2
$ + U

2
z )1/2. (∗) Runs with no dynamo.

α-effect, which is responsible for producing poloidal fields from
toroidal fields (and vice versa) by rising or descending and twist-
ing convective eddies (Parker 1955; Steenbeck et al. 1966). In all
of our simulations the kinetic helicity is negative (positive) in the
northern (southern) hemisphere, as is shown in Fig. 4 for run A1.
This, combined with a solar-like differential rotation, suggests
that an αΩ dynamo is operating, in which case the direction of
propagation of the dynamo waves is polewards (Parker 1955;
Yoshimura 1975). This is consistent with our findings, which are
discussed in more detail in Sect. 3.2.

3.1.3. Convective energy transport

The luminosities corresponding to radiative, enthalpy, kinetic
energy, cooling, and heating fluxes according to Eqs. (31)–(36)
of Käpylä (2021) are shown in Fig. 5 for run C4. The enthalpy
and kinetic energy fluxes dominate almost everywhere, except
near the surface where the cooling becomes important. This is
similar to the results of Brown et al. (2020) and to the rotating
runs of Käpylä (2021). The total flux reaches somewhat less
than 90% of the luminosity from the heating near the surface.

Fig. 1. Amplitude of radial differential rotation as a function of magnetic
Reynolds number for simulations of sets A (circles), B (squares), and
C (triangles). Cyan and red is for simulations with dynamo and without
dynamo, respectively.

A possible reason for this discrepancy is a non-negligible contri-
bution from the SGS flux.

3.2. Dynamo variation

As shown in Table 1, the main differences between the simula-
tions are the input parameters PrM and the rotation rate. In this
subsection we present the effects of varying these parameters on
the large-scale magnetic field.

3.2.1. Dependence on rotation

We explored simulations with fixed PrM and varying Prot with
values between 43 and 90 days. These values were determined
using the conversion method outlined in Appendix A of Käpylä
(2021). In order to compare the large-scale magnetic field at the
three rotation rates used here, we chose runs with comparable
magnetic Reynolds numbers and different rotation rates.

Three representative runs with ReM < 100 from each set are
A6 with ReM = 75, B1 with ReM = 84, and C3 with ReM = 67.
Run A6 shows cycles in the azimuthally averaged toroidal mag-
netic field, Bφ(R, θ, t), as shown in the middle top panel of Fig. 6.
The cycles were computed using the empirical mode decomposi-
tion with the libeemd library (Luukko et al. 2016), as in Käpylä
(2022). To determine the periods we used Bφ(R, θ, t), from the
range −60◦ < θ < 60◦. The cycle was determined by taking the
mode with the largest energy, and counting the period from the
zero crossings of that mode.

The left middle panel of Fig. 6 shows Bφ(R, θ, t) for run B1,
which also exhibits cycles. The reversals are periodic for most
of the run, and this run also shows longer term modulation in the
northern hemisphere towards the end of the run. The left bottom
panel of Fig. 6 is for run C3. Unlike the runs just mentioned,
C3 does not exhibit cyclic reversals. However, it does reveal the
presence of a dipolar field, with a positive (negative) polarity in
the northern (southern) hemisphere. At similar values of mag-
netic Reynolds number, the third column of Table 1 indicates a
slight reduction in Brms at lower rotation rates.

Three representative runs with higher magnetic Reynolds
number (ReM ≈ 300) and different rotation rates are A15 with
ReM = 300, B3 with ReM = 315, and C4 with ReM = 337.
The right top panel of Fig. 6 shows Bφ(R, θ, t) of run A15. This
run has irregular reversals with the field mainly distributed from
mid-latitudes (±45 ◦) to the equator. Near the poles the field is
quasi-stationary. The middle centre panel of Fig. 6 is for B3,
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Fig. 2. Normalised time-averaged mean angular velocity Ω/Ω0 for simulations A1 (left), A16 (middle), and A8 (right). The coloured contours
indicate Ω($, z). The streamlines indicate the mass flux due to meridional circulation. The amplitude of the meridional flow speed (Ũ

max

mer ) is
indicated in the lower right corner of each panel. The surface is indicated by the grey line, while the equator is indicated by the grey dotted line.

Fig. 3. Normalised convective power as a function of ` for simulations
A10, A13, A16, B2, B3, B5, C2, C3, C4, and C6.

Fig. 4. Azimuthally averaged normalised kinetic helicity, H̃ = H($, z)/
urmsωrms, for simulation A1 with Co = 9.2 and PrM = 0.2.

Fig. 5. Luminosity profiles of kinetic energy (purple), cooling (blue),
heating (orange), and enthalpy (red) fluxes of run C4.

where a dipole with a few random reversals is visible with a pre-
dominantly negative (positive) polarity at the northern (south-
ern) hemisphere. The azimuthally averaged toroidal magnetic
field of C4 is shown in the centre bottom panel of Fig. 6, where
a predominantly positive (negative) polarity. Mollweide projec-
tions of the radial magnetic field at the surface of runs A15, B3,
and C4 are shown in Fig. 7, where the field is less intense for
the runs with lower rotation. In this sense, the Brms decreases
with decreasing rotation rate from A15 to B3, while B3 and
C4 have similar values. We find that in general the saturation
level of the magnetic field increases with ReM. This behaviour
is likely related to the presence of a small-scale dynamo that
produces magnetic fields at spatial scales that are of the same
order of magnitude as that of the turbulence. While this was not
the focus of our current study, it remains an important area for
future research.

In Fig. 8 we show the ratio of the rotation period to cycle
period as a function of the global Coriolis number. We find
that Prot/Pcyc ∝ Coβ with β = −1.30 ± 0.26. When consid-
ering the data points on the right of the figure, we find that
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Fig. 6. Azimuthally averaged toroidal magnetic field near the surface of the star as a function of time. The name of the simulation is indicated at
the bottom right of each panel.

Fig. 7. Mollweide projection of the radial magnetic field Br for runs A15, B3 and C4 with ReM ≈ 300 and different rotation rates.

β = −2.98 ± 1.13. The uncertainty in the slope indicates that
we need to take these results with caution. Nevertheless, earlier
studies have also found β < 0 (e.g., Strugarek et al. 2017, 2018;
Warnecke 2018; Viviani et al. 2018) with global simulations of
solar-like stars. Even when the domain of these simulations dif-
fers from the one presented here, the similarity in the relationship
between the cycle period and the Coriolis number implies a like-
ness in the dynamo processes of solar-like and fully convective
stars. Nevertheless, the negative slope found here differs from the
positive slopes for the inactive and active branches from obser-
vations (Brandenburg et al. 1998, 2017). However, some simu-
lations show β & 0 (Guerrero et al. 2019; Käpylä 2022), but the
cause of this behaviour is currently unclear.

3.2.2. Dependence on magnetic Reynolds and Prandtl
numbers

Magnetic Prandtl numbers from 0.1 to 10 were used in the
simulations. For all the current runs, the magnetic field is pre-
dominantly axisymmetric. When converted to physical units, the
azimuthally averaged toroidal magnetic field reaches strengths
ranging from 10 to 16 kG in our models. These values are higher

Fig. 8. Rotation period normalised to the cycle period as a function of
the global Coriolis number. The green circles are for ReM ∼ 100, blue
for 70 < ReM < 85, and yellow for ReM ≤ 55.

than those of the reported observations which are up to a few
kG (e.g., Kochukhov 2021). Set A has cycles for PrM ≤ 2 with
periods ranging from 309 to 471 free-fall times, which corre-
spond to 6.3–9.6 yr, when considering the same time conversion
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Table 3. Diffusivities, cycles, and averaged energy densities.

Sim ν η Cycles σ Ẽmag Etor
mag/Emag Epol

mag/Emag ẼDR
kin ẼMC

kin

A1 1.0 × 10−5 1.0 × 10−4 320 10 0.86 0.23 0.07 0.23 0.01
A2 6.9 × 10−6 6.9 × 10−5 309 7 0.89 0.20 0.06 0.27 0.02
A3 2.0 × 10−5 1.0 × 10−4 350 13 0.85 0.24 0.06 0.24 0.06
A4 5.0 × 10−5 1.0 × 10−4 320 33 0.64 0.20 0.06 0.31 0.02
A5 7.0 × 10−5 1.0 × 10−4 310 72 0.41 0.24 0.06 0.34 0.02
A6 4.9 × 10−5 6.9 × 10−5 326 11 0.84 0.21 0.05 0.31 0.02
A7 5.0 × 10−5 1.0 × 10−4 324 17 0.68 0.25 0.06 0.31 0.02
A8(∗) 7.0 × 10−5 3.5 × 10−4 – – – – – 0.55 0.01
A9 7.0 × 10−5 1.4 × 10−4 387 63 0.39 0.28 0.07 0.32 0.02
A10 5.0 × 10−5 5.0 × 10−5 471 84 0.77 0.16 0.04 0.32 0.02
A11 7.0 × 10−5 7.0 × 10−5 368 23 0.78 0.20 0.05 0.30 0.02
A12(∗) 1.0 × 10−4 1.0 × 10−4 – – – – – 0.54 0.02
A13 1.0 × 10−4 5.0 × 10−5 437 13 1.44 0.15 0.04 0.32 0.02
A14 1.0 × 10−4 2.0 × 10−5 – – 1.68 0.08 0.03 0.16 0.02
A15 1.0 × 10−4 7.1 × 10−5 – – 1.46 0.06 0.02 0.14 0.02
A16 1.0 × 10−4 1.0 × 10−5 – – 1.74 0.03 0.02 0.10 0.01
B1 3.6 × 10−5 7.2 × 10−5 274 38 0.45 0.20 0.04 0.33 0.02
B2 3.6 × 10−5 3.6 × 10−5 – – 0.53 0.16 0.03 0.38 0.02
B3 3.6 × 10−5 1.8 × 10−5 – – 0.80 0.11 0.03 0.30 0.02
B4 3.6 × 10−5 7.2 × 10−6 – – 1.21 0.06 0.02 0.22 0.02
B5 3.6 × 10−5 3.6 × 10−6 – – 1.13 0.03 0.02 0.014 0.01
C1 2.5 × 10−5 2.5 × 10−5 – – 0.67 0.17 0.03 0.31 0.03
C2(∗) 1.0 × 10−4 2.0 × 10−4 – – – – – 0.14 0.12
C3 1.0 × 10−4 1.0 × 10−4 – – 0.28 0.34 0.03 0.44 0.02
C4 3.6 × 10−5 1.8 × 10−5 – – 0.81 0.12 0.03 0.25 0.03
C5 3.6 × 10−5 7.2 × 10−6 – – 1.72 0.10 0.03 0.19 0.03
C6 3.6 × 10−5 3.6 × 10−6 – – 1.06 0.04 0.02 0.16 0.02

Notes. The columns from left to right indicate normalised kinematic viscosity ν̃ = (RGM)−1/2ν; normalised magnetic diffusivity η̃ = (RGM)−1/2η;
cycle periods, and their standard deviations, both in terms of tff ; and energy densities if applicable. The magnetic energy density is Emag = 〈B2/2µ0〉,
where the brackets indicate volume and time average within the radius of the star. The kinetic energy density is Ekin = 1

2 〈ρU2〉. The energy density

for the azimuthally averaged toroidal and poloidal fields are given by Etor
mag = 〈B

2
φ/2µ0〉 and Epol

mag = (〈B
2
$ + B

2
z 〉)/2µ0, respectively. The energy

density for the differential rotation and meridional circulation are given by EDR
kin = 1

2 〈ρU
2
φ〉 and EMC

kin = 1
2 〈ρ(U

2
$ + U

2
z )〉, respectively. Tildes over

energies refer to normalisation by Ekin; (∗) Runs with no dynamo.

factor used by Käpylä (2021). Run B1 also shows cycles with
a period of 274 free-fall times. Table 3 lists the values of ν, η,
the cycle periods (if applicable) together with the correspond-
ing standard deviation for all the simulations presented here. We
found that the calculated length of the cycle periods of the runs
of set A has a very slight increase when increasing the magnetic
Reynolds number as Pcyc ∝ ReαM with α = 0.25±0.14. Addition-
ally, when considering the runs with similar ReM and different
PrM, we found that the cycle period is virtually independent of
PrM in the parameter regime explored here.

The azimuthally averaged toroidal magnetic field Bφ(R, θ, t)
is shown in Fig. 6 for a set of representative runs. The top pan-
els are for three runs of set A, which have the same rotation
period and increasing ReM from left to right. The top left panel
is for run A1 with ReM = 55, with Pcyc = 320 ± 10 free-fall
times. The top centre panel is for run A6 with ReM = 75 and
Pcyc = 326 ± 11 free-fall times. In these cases the field is dis-
tributed in latitudes |θ| . 80 ◦. Simulations with higher values of
PrM and ReM, such as run A15 with ReM = 300, result in the loss
of cycles and the emergence of irregular solutions. Similar irreg-
ularities of dynamo solutions have previously been observed in

simulations with high ReM (e.g., Käpylä et al. 2017), but the
exact mechanism is still unknown. In this case the field is dis-
tributed at latitudes |θ| . 50 and also exhibits quasi-stationary
solutions near the poles.

The polarity of the field changes from the surface to r =

0.5 R. Figure 9 shows Bφ at r = 0.5 R for runs A1 and A15.
In simulations with cycles, such as A1, the cycles are visi-
ble throughout the convection zone. However, for runs with
higher magnetic Prandtl number (PrM > 2), such as A15, the
azimuthally averaged toroidal magnetic field changes with depth
and shows less clear magnetic structures in the deeper layers.

The second row of Fig. 6 shows three runs from set B that
have the same rotation rate and increasing ReM. The left panel
is for run B1 with ReM = 84, which exhibits a cycle with
Pcyc = 274±38 free-fall times, as well as longer reversals or dis-
appearing cycles towards the end of the run. In this run the field
is distributed at latitudes |θ| . 80 ◦. The centre panel is for run B3
with ReM = 315, which exhibits an irregular solution with few
polarity reversals and predominantly quasi-static fields. In this
case the field spans slightly less latitudinally, distributed at lati-
tudes |θ| . 75 ◦. The right centre panel of Fig. 6 shows run B5,
which has the highest PrM and ReM in this set with PrM = 10
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Fig. 9. Azimutally averaged toroidal magnetic field at r = 0.5 for sim-
ulations A1 (top) and A15 (bottom) with ReM = 55 and ReM = 300,
respectively.

and ReM = 1360. The field is more concentrated towards the
equator (at latitudes |θ| . 50 ◦) with seemingly irregular rever-
sals. Similar to run A15, B5 also has a quasi-stationary solu-
tion near the poles. The third row of Fig. 6 are for runs of
set C, which have the slowest rotation in the present work, with
increasing ReM from left to right. Runs C3 with ReM = 67 and
C4 with ReM = 337 show a predominantly quasi-static dipolar
field, which spans latitudes |θ| . 75 ◦. A similar dipolar field
was reported by Moutou et al. (2017) for the fully convective
and slow-rotating M dwarf GJ 1289. However, in our models the
toroidal magnetic energy is dominant (see Table 3), whereas the
large-scale magnetic field of GJ 1289 is purely poloidal. Run C6
with ReM = 1419 has a field concentrated near the equator and
the large-scale structures are less clear than in C3 and C4.

The radial magnetic field, Br, also varies as a function of
ReM. Mollweide projections of the radial magnetic field for runs
B1, B2, and B5, with increasing ReM from left to right are pre-
sented in Fig. 10. The main differences here are the structure
and maximum values of the magnetic field strength. The size of
the structures in runs B1 and B2 are similar, but the strength of
the field is slightly higher in B2. Run B5 has smaller field struc-
tures than in the previous cases, and the magnetic field strength
is higher.

Table 3 lists the energy densities of the simulations. The
total magnetic energy Emag is a significant fraction of the kinetic
energy density in all of the runs with dynamos, sometimes also
exceeding it. One may expect that Emag grows with increasing
ReM (PrM), as found in other works (e.g., Käpylä et al. 2017). In
this regard, there is no discernible trend in the simulations shown
here in terms of the variation of Emag. Since the kinetic energy
density, Ekin, decreases with increasing PrM the ratio Emag/Ekin

grows. The decrease in the kinetic energy can be explained
because at large PrM it is converted into magnetic energy more
efficiently.

At low PrM the kinematic exponentially growing regime lasts
longer than in the simulations with high PrM. Figure 11 shows
the evolution of Emag and Ekin in the kinematic and saturated
regimes for runs A4 and A16. The kinematic regime of simula-
tion A4 lasted about ten times longer than the kinematic regime
of run A16. It can be seen in simulation A4 that Emag is amplified
by six orders of magnitude. In the saturated regime both energies
are comparable, such that Ekin is about 1.5 times Emag. However,
in simulation A16 the kinetic energy density is slightly reduced,
while the magnetic energy density is increased by a factor of
roughly 1.8. The PrM at which Emag overcomes Ekin occurs at
PrM > 1 for sets A and B, and at PrM > 2 for set C. A simi-
lar behaviour of the kinetic and magnetic energy densities was
reported by Browning (2008) for simulations of fully convective
stars. In run Cm2 of that work with PrM = 5, Emag/Ekin ≤ 1,
while Cm with PrM = 8 has Emag/Ekin = 1.2.

Table 3 also includes the energy densities of mean toroidal
(Etor

mag) and poloidal (Epol
mag) magnetic fields (see Cols. 8 and 9).

The mean toroidal Etor
mag accounts for up to 30% of total magnetic

energy density and, in general, diminishes as ReM increases.
Epol

mag is less than 10% of Emag for almost all simulations. In gen-
eral, the ratio of the energy of the mean field to total energy
decreases for high magnetic Reynolds numbers. Figure 12 shows
the saturation level of the mean field as a function of ReM for
subsets of simulations from sets A and B. We do not find a clear
trend in the saturation level of the mean energy as a function of
the magnetic Reynolds number. A decrease in the mean energy
with the inverse magnetic Reynolds number is usually associated
with catastrophic quenching (e.g., Cattaneo & Vainshtein 1991;
Brandenburg 2001). It can be interpreted as an outcome of mag-
netic helicity conservation, which becomes important as ReM
grows (e.g., Brandenburg & Subramanian 2005). Nevertheless,
the boundary conditions in our simulations do allow magnetic
helicity fluxes.

Furthermore, the kinetic energy density of the differential
rotation, EDR

kin , and meridional circulation, EMC
kin , are given in

Table 3. For simulations with a dynamo EDR
kin decreases at higher

ReM, while for simulations A8 and A12 with no dynamo EDR
kin

is significantly higher. More specifically, the runs without a
dynamo in set A exhibit roughly five times higher EDR

kin than runs
with a dynamo in the same set. This indicates magnetic quench-
ing of differential rotation. In all of the simulations discussed
here, EMC

kin is around 1–3% of Ekin, with the exception of C2,
where EMC

kin ≈ 0.12Ekin.

4. Summary and conclusions

We have performed a large number of simulations of fully
convective M dwarfs using the star-in-a-box set-up presented
in Käpylä (2021). We used the stellar parameters for an M5
dwarf with 0.21 M� at three rotation rates corresponding to
Prot = 43, 61, and 90 days, and varied the magnetic Prandtl
number from 0.1 to 10. Our simulations explore the interme-
diate to slowly rotating regime. Consistent with previous work
by Käpylä (2021), we find solar-like differential rotation in the
simulations presented here.

We found different solutions for the large-scale magnetic
field depending on the rotation period and the magnetic Prandtl
number, which in our models fixes the magnetic Reynolds
number. For the simulations with Ω̃ = 1.0 (set A) and
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Fig. 10. Mollweide projection of the radial magnetic field Br for runs with the same rotation rate and different ReM, B1 with ReM = 84, B2 with
ReM = 168, and B5 with ReM = 1360.

Fig. 11. Time evolution of the kinetic (black) and magnetic (blue)
energy densities in the kinematic (left) and saturated (right) regimes
for simulations A16 with PrM = 10 (top) and A4 PrM = 0.5 (bottom).
The energies are normalised by Ekin.

Fig. 12. Mean magnetic energy normalised by kinetic energy as a func-
tion of the magnetic Reynolds number. The blue markers are for the
last four simulations of set A; the red markers are for the simulations
of set B. Circles (triangles) are for runs with 2003 (5763) of resolution.
The dotted line corresponds to a power law that shows what a decrease
in mean energy with the inverse magnetic Reynolds number might look
like.

ReM ≤ 105, the large-scale magnetic field is cyclic, with Pcyc
ranging from 309 to 471 free-fall times. In this set we found a
slight increase in the length of the cycle period with increasing
ReM. For larger ReM no clear cycles are found, and instead the
behaviour of the magnetic field and its reversals become irreg-
ular. For the simulations with Ω̃ = 0.7 (set B) we found cycles
for run B1 with ReM = 84, while for higher values of ReM the
reversals are less regular, and instead a quasi-static configuration
is found. For the highest ReM the solutions become irregular. For
the case with the lowest rotation rate (Ω̃ = 0.5) the field is mainly
dipolar for ReM ≤ 750. At higher magnetic Reynolds numbers
the magnetic field is predominantly irregular and concentrated
at mid-latitudes, with quasi-stationary fields near the poles. We

note that in the three sets the large-scale field is irregular and
concentrated near the equator for the highest PrM (ReM). Addi-
tionally, the rms velocity increases for decreasing rotation for
comparable ReM. We also note that for a few of the simulations,
particularly A8, A12, and C2, no dynamo was found because
ReM was below the critical value to drive a large-scale dynamo.

Furthermore, the ratio Prot/Pcyc decreases with the
Coriolis number, similar to the simulations of solar-like
stars by Strugarek et al. (2017, 2018), Warnecke (2018), and
Viviani et al. (2018). Our results confirm the important role of
rotation and dimensionless parameters such as ReM and PrM
in determining the properties of fully convective dynamos.
Depending on the parameters, the magnetic field can show
a clear cyclic behaviour with the cycle period influenced by
the rotation rate and dimensionless parameters such as ReM
and PrM. The large-scale magnetic field shows cycles for low
and modest values of ReM, but the cycles are lost for highest
magnetic Reynolds numbers where irregular or quasi-static
fields dominate. A similar loss of cyclic solutions was reported
by Käpylä et al. (2017) who also increased PrM to increase ReM.
Whether the behaviour of the dynamo changes if ReM is fixed
and PrM is lowered is yet an open question. This is also closer
to the parameter regime of late-type stars where PrM � 1 and
ReM � 1, but this parameter regime is extremely challenging
numerically.

A very tentative comparison can be pursued with the
Proxima Centauri system, where Klein et al. (2021) inferred a
seven-year activity cycle. In principle, the activity cycle inferred
in our simulations is in the range from five to nine years, and is
thus consistent with the observed data. We note that this compar-
ison is preliminary; even though the rotation rate we adopt here is
similar, the magnetic Prandtl number is likely to be different, and
even larger differences are expected when comparing the mag-
netic Reynolds number of the star with that of our simulations.
It is well known that the solutions for the magnetic field depend
on these parameters, and thus leads to uncertainty in the possible
interpretation. It is nevertheless encouraging that the behaviour
found in the simulations is quite similar.

Overall, the study presented here, to our knowledge, con-
sists of the largest exploration of the parameter space for dynamo
models of fully convective M dwarfs. Uncertainties remain, for
instance regarding the role of the magnetic Reynolds number,
which will still be much larger in realistic systems. While a clear
signature of a small-scale dynamo is not found in our simula-
tions, the expectation is that small-scale dynamos are present at
larger magnetic Reynolds numbers, and interact with the large-
scale dynamo, thereby changing the solution.
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