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ABSTRACT

Eclipsing time variations in post-common-envelope binaries were proposed to be due to the time-varying component of the stellar
gravitational quadrupole moment. This is suggested to be produced by changes in the stellar structure due to an internal redistribution
of angular momentum and the effect of the centrifugal force. We examined this hypothesis and present 3D simulations of compress-
ible magnetohydrodynamics performed with the Pencil Code. We modeled the stellar dynamo for a solar-mass star with angular
velocities of 20 and 30 times solar. We included and varied the strength of the centrifugal force and compared the results with ref-
erence simulations without the centrifugal force and with a simulation in which its effect is enhanced. The centrifugal force causes
perturbations in the evolution of the numerical model, so that the outcome in the details becomes different as a result of nonlinear
evolution. While the average density profile is unaffected by the centrifugal force, a relative change in the density difference between
high latitudes and the equator of ∼10−4 is found. The power spectrum of the convective velocity is found to be more sensitive to
the angular velocity than to the strength of the centrifugal force. The quadrupole moment of the stars includes a fluctuating and a
time-independent component, which vary with the rotation rate. As very similar behavior is produced in absence of the centrifugal
force, we conclude that it is not the main ingredient for producing the time-averaged and fluctuating quadrupole moment of the star.
In a real physical system, we thus expect contributions from both components, that is, from the time-dependent gravitational force
from the variation in the quadrupole term and from the spin-orbit coupling that is due to the persistent part of the quadrupole.
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1. Introduction

Eclipsing time variations (ETVs) have been observed in
a wide range of post-common-envelope binaries (PCEBs;
Zorotovic & Schreiber 2013; Bours et al. 2016). Traditionally,
two explanations have been proposed for the observed varia-
tions: One explanation refers to the possible presence of a third
body, preferentially with a mass of a few Jupiter masses in the
case of NN Ser (Beuermann et al. 2010) and a brown dwarf of
0.035 M� in V471 Tau (Vaccaro et al. 2015), and on a wide orbit,
which could explain the observed ETVs as due to the orbit of
the binary system around the common center of mass via the
light travel time effect (e.g., Beuermann et al. 2012, 2013). The
presence of such planets might be explained either because they
survived the common-envelope event (Völschow et al. 2014) or
because they formed from the ejecta of common-envelope mate-
rial (Schleicher & Dreizler 2014). However, the planetary sys-
tems were sometimes found to be unstable (Mustill et al. 2013),
and at other times, the predicted planets were not detected
(Hardy et al. 2015).

An alternative possibility is that the ETVs is caused in
the binary system itself, as a result of magnetic activity.
This might occur in different forms. An early suggestion by
Decampli & Baliunas (1979) considered a rocket effect pro-

duced by anisotropic mass loss, but the hypothesis was finally
rejected. Tidal torques are another possibility, but their magni-
tudes are so low (Zahn & Bouchet 1989; Ogilvie & Lin 2007)
that they cannot transfer the necessary angular momentum
(Applegate & Patterson 1987). As a different solution, both
Matese & Whitmire (1983) and Applegate & Patterson (1987)
proposed that the orbital period would be changed if the stellar
quadrupole moment changed as a result of magnetic activity.

This was a central step, but the cause for the change in
the stellar quadrupole moment remains to be defined and its
strength needs to be determined. In the original models (e.g.,
Matese & Whitmire 1983; Applegate & Patterson 1987), it was
assumed that the magnetic field deforms the star by causing a
deviation from its hydrostatic equilibrium, requiring thus a very
strong magnetic field. Marsh & Pringle (1990) showed, however,
that the required periodic deformation was too strong to be sus-
tained by the luminosity of the star. A different scenario thus
emerged in which the change of the quadrupole moment is not
caused directly by the magnetic field, but is a result of angu-
lar momentum redistribution inside the star through the dynamo
process, which then leads to stellar distortions as a result of
the centrifugal force (Applegate 1992). Within a simplified thin-
shell model, considering an inner core and an infinitely thin
shell, Applegate (1992) calculated the quadrupole moment of the
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shell as

Q =
1
9

MsR2
(
Ω2R3

GM

)
, (1)

where M is the mass of the star, Ms � M is the mass of the
shell, Ω is the angular velocity of the shell, R is the radius from
the center of the star to the shell, and G is the gravitational con-
stant. Applegate (1992) calculated the angular momentum to be
transferred within the star to produce a period variation ∆P as

∆J = −
GM2

R

( a
R

)2 ∆P
6π

, (2)

with a the separation of the binary system. The energy required
to transfer the angular momentum is then

∆E = Ωdr∆J +
(∆J)2

2Ieff

, (3)

where Ωdr refers to the difference of angular velocity between
the shell and the core, and Ieff is the effective moment of inertia,
corresponding to about half of the inertial moment of the shell.

This model was extended by Brinkworth et al. (2006), who
considered a finite instead of an infinitely thin shell, show-
ing that the latter increased the energy required to produce the
deformation by roughly one order of magnitude. Völschow et al.
(2016) subsequently applied this model in a systematic way
to the sample of Zorotovic & Schreiber (2013), showing that
the energy requirement is sometimes fulfilled and sometimes
it is not. A similar conclusion was obtained by Navarrete et al.
(2018) through an extension of the analysis. On the other hand,
more detailed 1D models solving the evolution equation for the
stellar angular momentum indicated that the energetic require-
ment may actually be reduced (Lanza 2006), and Völschow et al.
(2018) concluded that the mechanism is feasible for stars with
masses of 0.3−0.36 M�.

Other types of solutions have also been proposed. For
instance, Applegate (1989) derived librating and circulating
solutions in the presence of a constant quadrupole moment,
although they were originally predicted to provide modulations
over shorter periods than observed in the PCEBs. Lanza (2020)
re-examined this scenario, however, and proposed that a persis-
tent nonaxisymmetric internal magnetic field could produce an
appropriate quadrupole moment to explain the observed devia-
tions at a much lower energetic expense than in the scenario in
which the quadrupole moment variation is produced via the cen-
trifugal force (e.g., Applegate 1992).

This problem was recently revisited in 3D magnetohydrody-
namical (MHD) simulations, and although the centrifugal force
was not included, quasi-periodic quadrupole moment variations
caused by magnetic activity were found. They were roughly still
one order of magnitude lower than required by observations,
however (Navarrete et al. 2020). As they were not driven via
the centrifugal force, it seems more likely that a change in the
internal circulation in the star rather than a redistribution of the
angular momentum has caused this result. This was recently con-
firmed via an extended set of simulations with a more detailed
analysis (Navarrete et al. 2022).

As the correct mechanism that gives rise to the ETVs is still
not established, it is fundamental to investigate how the centrifu-
gal force influences the change in the quadrupole moment within
the stars. For this purpose, we present 3D MHD simulations of
a solar-mass star that include and vary the centrifugal force to
assess in this way how it affects the stellar structure. Thus, we

aim to verify whether the origin of these variations is based on
the centrifugal force as proposed by Applegate (1992), or if other
mechanisms must be at play to cause the observed variations.
Our numerical approach is presented in Sect. 2, and the results
are given in Sect. 3. We finally present our discussion and con-
clusions in Sect. 4.

2. Model

We present two sets of simulations with rotation rates 20Ω� and
30Ω�, where Ω� is the solar rotation rate. These are part of an
overall larger set of simulations that has been pursued to analyze
dynamos in the context of young stars (Navarrete et al., in prep.).
We label the first set simulation group C and the second set group
D. Within each set, we varied the centrifugal force amplitude.

The compressible MHD equations were solved on a spheri-
cal grid with coordinates (r, θ, φ), where 0.7 6 r 6 R is the radial
coordinate, R is the radius of the star, π/12 6 θ 6 11π/12 is
the colatitude, and 0 6 φ < 2π is the longitude. The model is
the same as in Käpylä et al. (2013) and Navarrete et al. (2020,
2022). The equations were solved in the following form:

∂A
∂t

= u × B − ηµ0 J, (4)

D ln ρ
Dt

= −∇ · u, (5)

Du
Dt

= F grav + FCor + F cent
−

1
ρ

(∇p − J × B − ∇ · 2νρS),

(6)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (7)

where A is the magnetic vector potential, B = ∇× A is the mag-
netic field, u is the velocity field, η is the magnetic diffusivity,
µ0 is the vacuum permittivity, J is the current density, ρ is the
density, p is the pressure, ν is the viscosity, S is the rate of strain
tensor, T is the temperature, and s is the entropy. Frad and FSGS

are the radiative and the subgrid scale fluxes, respectively (see,
e.g., Käpylä et al. 2013). The SGS flux is given by

FSGS = −χSGSρT∇s, (8)

where χSGS = χm
SGS = 0.4ν at 0.75 < r/R < 0.98 and increases

smoothly to 12.5χm
SGS above r = 0.98R. Below r = 0.75R, it

decreases smoothly and approaches zero. This term is a param-
eterization of the unresolved turbulent heat transport. The SGS
diffusivity is needed because the radiative diffusivity χ = K/cPρ,
where K is the heat conductivity and cP is the specific heat at
constant pressure, is insufficient to smooth grid-scale fluctua-
tions even with the enhanced luminosity of the current simula-
tions. Furthermore,

F
grav = −(GM/r2)r̂, (9)

F
Cor = −2Ω0 × u, (10)

F
cent = −c fΩ0 × (Ω0 × r) (11)

are the gravitational, Coriolis, and centrifugal forces. Here,Ω0 is
the rotation rate of the modeled star. The parameter c f was intro-
duced by Käpylä et al. (2020) and controls the strength of the
centrifugal force. c f = 1 corresponds to the unaltered centrifu-
gal force amplitude, and c f = 0 implies no centrifugal force. It
is defined as

c f =

∣∣∣F cent
∣∣∣∣∣∣F cent

0

∣∣∣ , (12)
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with |F cent
0 | being the physically consistent magnitude of the cen-

trifugal force. The need to control the centrifugal force arises
due to the enhanced luminosity and rotation rate in simulations
of stellar (magneto-) convection. This approach is necessary to
avoid a too large gap between acoustic, convective, and ther-
mal relaxation timescales in simulations that solve the compress-
ible MHD equations (e.g., Brandenburg et al. 2005; Käpylä et al.
2013). Using the realistic stellar luminosity would have the con-
sequence that flow velocities would be much lower than the
sound speed. The time step would then become prohibitively
short and the thermal relaxation (Kelvin-Helmholtz) time pro-
hibitively long (see Käpylä et al. 2020, for the effects of vary-
ing luminosity on the flow properties). The enhancement of the
luminosity is described by

Lr =
Lsim

L∗
, (13)

whereLsim is the luminosity in our model andL∗ is the luminos-
ity of the target, the physical star. We have Lr = 8.07 × 105 for
the setup adopted here for a solar-like target star (Navarrete et al.
2020). The angular velocity has to be enhanced correspond-
ingly to produce a realistic Coriolis number. For the centrifugal
force, on the other hand, the strength should be limited so that
the impact on the structure of the star is not overestimated. For
numerical stability and as outlined by Käpylä et al. (2020), each
run was initialized with c f = 0, and it was increased in small
incremental steps after the saturated regime was reached. In this
way, the effect of the centrifugal force can be explored in the
simulation.

To quantify the strength of the centrifugal force, we com-
puted the ratio of gravitational to centrifugal forces in the simu-
lations presented here as well as for a real Sun-like star with the
same rotation rate. The ratio of the two is defined as

F =
(|F cent

|/|F grav
|)sim

(|F cent
|/|F grav

|)?
, (14)

where the subscript asterisk denotes the real star and sim the
simulations. If this ratio is equal to unity, the relative strength
of the centrifugal force with respect to gravity is the same in
the simulation as in the real star. Particularly for rapidly rotating
stars, it is in principle harder to model a case with F = 1, and we
typically remain somewhat below this ratio, but we also present
a case with F > 1 for comparison.

The details of the model are further described in
Navarrete et al. (2020, 2022) and in Käpylä et al. (2013), and
we refer to these papers to avoid repetition. We nonetheless
recall that the model assumes an outer spherical boundary at
the stellar radius that is assumed to be impenetrable and stress-
free. At the lower boundary at 70% of the stellar radius, the
magnetic field is assumed to obey a perfect conductor bound-
ary condition, while at the top boundary, the field is assumed
to be radial. The temperature gradient is fixed at the bottom,
while a blackbody condition is applied at the surface. The setup
includes colatitudinal boundaries at 15◦ and 165◦, which are
assumed to be stress-free and perfectly conducting. Density and
entropy are assumed to have zero first derivatives on colatitu-
dinal boundaries. The gravitational potential is spherically sym-
metric and independent of time, and self-gravity is not taken into
account. The equations are solved with the Pencil Code1, a
high-order finite-difference code for compressible MHD equa-
tions (Pencil Code Collaboration 2021).

1 https://github.com/pencil-code/pencil-code

We define the Coriolis, Taylor, Reynolds, magnetic
Reynolds, Prandtl, magnetic Prandtl, SGS Prandtl, and Péclet
numbers as

Co =
2Ω0

urmsk1
, Ta =

[
2Ω0(0.3R)2

ν

]2

, Re =
urms

νk1
, (15)

ReM =
urms

ηk1
, Pr =

ν

χm
, PrM =

ν

η
, PrSGS =

ν

χm
SGS

, (16)

Pe =
urms

χm
SGSk1

, (17)

where urms is the root-mean-square velocity, k1 = 2π/0.3R is an
estimate of the wavenumber of the largest convective eddies, and
χm

SGS = 0.4ν is the subgrid-scale entropy diffusion in the middle
of the convective region. Each run is characterized by Pr = 60,
PrM = 1, and PrSGS = 2.5. The other quantities are shown in
Table 1. Throughout this paper, overbars denote averages over
longitude.

3. Results

We present the results of two sets of three simulations each.
Set C is characterized by a rotation rate of 20Ω� and set D by
30Ω�. Runs C1 and D1 correspond to the parent runs without
centrifugal force from which C2 and C3, and D2 and D3 were
forked, respectively. The last four runs were initialized with the
centrifugal force. For runs C2 and C3, we considered F = 0.875,
but they were initialized from C1 at different times. This was
done to test whether the initial magnetic state of the parent run
alters the solution of the forked run. Runs D2 and D3 have
F = 0.875 and 8.75, respectively. This last run is considered
as an extreme case where we exaggerated the effect of the cen-
trifugal force to show the corresponding implications. Each sim-
ulation had a resolution of 144×288×576 grid points in (r, θ, φ).

3.1. Dynamical state in the simulations

In our simulations, the azimuthally averaged density profile at
the equatorial plane of the star is basically unaffected by the
centrifugal force; the only change we see occurs at high lati-
tudes. We focus here on relative density differences between the
region 60◦ above the equator and the density profile at the equa-
tor, which we define via

ρdiff =
ρ(90◦ − θ = 60◦) − ρ(90◦ − θ = 0◦)

〈ρ〉rθ
, (18)

where 〈ρ〉rθ is the volume-averaged density. In the context of
the enhanced luminosity method, we recall that density dif-
ferences scale as (Brandenburg et al. 2005; Käpylä et al. 2013;
Navarrete et al. 2020)

ρdiff ∝ L
2/3
r . (19)

This implies that we should multiply with a factor L−2/3
r to

obtain the expected density difference in a physical star. We cal-
culated these density differences and averaged them over the last
80 yr of the simulation. They are shown in Fig. 1 as a func-
tion of radius. These differences are more relevant in the inte-
rior of the star, at 70−80% of the stellar radius, where they
have a typical magnitude of about 10−4. These density varia-
tions show clear trends with the centrifugal force, which tends
to increase the density difference between higher latitudes and
equator toward positive values. There are marked differences
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Table 1. Summary of the dimensionless parameters that characterize the simulations.

Run Ω/Ω� c f Co Ta Re ReM Pe F 〈∆
(r)
Ω
〉t 〈∆

(60◦)
Ω
〉t ∆

′(r)
Ω,rms ∆

′(60◦)
Ω,rms

C1 20 0 57.2 2.53(9) 22.1 22.1 55.3 0 9.16(−4) 3.42(−3) 4.26(−4) 5.02(−4)
C2 20 1.0(−4) 55.6 2.53(9) 22.8 22.8 57.0 8.75(−1) 9.27(−4) 3.60(−3) 4.62(−4) 5.30(−4)
C3 20 1.0(−4) 56.7 2.53(9) 22.3 22.3 55.8 8.75(−1) 8.40(−4) 3.66(−3) 6.23(−4) 6.28(−4)
D1 30 0 137.9 5.72(9) 13.8 13.8 34.6 0 −2.51(−4) 4.51(−4) 8.05(−5) 1.23(−4)
D2 30 1.0(−4) 137.8 5.72(9) 13.8 13.8 34.8 8.75(−1) −2.42(−4) 4.75(−4) 1.15(−4) 1.54(−4)
D3 30 1.0(−3) 130.1 5.72(9) 14.6 14.6 36.6 8.75 −6.34(−5) 8.70(−4) 1.52(−4) 2.39(−4)

Notes. Co is the Coriolis number, Ta is the Taylor number, Re and ReM are the fluid and magnetic Reynolds numbers, and Pe is the Péclet number.
For each run, Pr = 60, PrM = 1, and PrSGS = 2.5. ∆

(r),(60◦)
Ω

denote the radial and latitudinal differential rotation and are defined in Eqs. (21) and
(22), respectively. 〈...〉t denotes averages over time, and the prime denotes fluctuating quantities.

Fig. 1. Density difference between regions at 60◦ above the equator and
the equator.

between runs C1 and C2, but not between runs D1 and D2. A
possible explanation for this might be the different dynamo solu-
tions. In general, runs in set C show dynamos that tend to alter-
nate between the two hemispheres. This produces an asymmetry
on the density field with respect to the equator. In this case, ρdiff
increases when the magnetic field is more concentrated in one
hemisphere. This is the case for runs C1 and C2. The difference
comes from the location of the magnetic field structure, which
reduces the local density. This is not the case for runs D1 and
D2, however, and so the density profiles are the same. A similar
explanation can be given for run D3.

Snapshots of the final state of the radial (convective) velocity
near the surface of the star are given in Fig. 2 for simulations D1
and D3, which are also representative of the other runs within
our set of simulations. The series of runs C and D correspond to
fast rotators, and the convective cells are therefore very small
toward medium to high latitudes, whereas they become elon-
gated near the equator. This is a common phenomenon obtained
in simulations of stellar convection (see, e.g., Viviani et al. 2018)
and is consistent with the Taylor-Proudman balance. The result
for D3 is very similar as for D1, but it is not identical. While
both runs were evolved until the same time, an identical result
is not expected because the dynamics are nonlinear and because
the centrifugal force causes perturbations within the star. On the
other hand, and even though in principle the strength of the cen-
trifugal force is quite significant in run D3, the impact on the
flow pattern appears to be relatively minor.

Similar projections, now for the radial component of the
magnetic field, are presented in Fig. 3. In run D1, clear non-
axisymmetric structures are present that extend throughout each
hemisphere. Nonaxisymmetric structures seem to be somewhat

Fig. 2. Mollweide projections of radial velocity near the surface for runs
D1 and D3.

smaller in run D3, that is, an m = 2 mode is also present. The
amplitude of Br remains very similar.

We decomposed the radial velocity field at the surface of
selected runs into spherical harmonics and calculated the nor-
malized convective power spectra as

Pkin =
Ekin, l∑
l Ekin, l

, (20)

where Ekin, l is the kinetic energy of the lth degree. This is shown
in Fig. 4, where we plot P as a function of l up to lmax = 288.
This is the maximum resolution we can achieve because we
used 576 grid points along the φ direction. The convective power
peak is shifted toward higher l for higher rotation rates, but the
centrifugal force has no significant influence on it, even in the
extreme case of run D3. We note that the contribution of the
polar caps, which are not part of the computational domain, are
not included in the spherical harmonic decomposition or in the
power spectra.
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Fig. 3. Mollweide projections of radial magnetic field near the surface
for runs D1 and D3.

Fig. 4. Normalized convective power spectra for runs C1, C2, C3, D1,
D2, and D3.

In Fig. 5 we show the time-averaged and azimuthally aver-
aged angular velocity normalized with the angular velocity of the
rotating frame for simulations with different rotation rates and
with and without the centrifugal force. In set D, where the angu-
lar velocity is higher in general, we find that stellar differential
rotation is reduced compared with set C, which is expected for
more rapidly rotating runs (e.g., Kitchatinov & Rüdiger 1995;
Viviani et al. 2018). Measures of the radial and latitudinal differ-
ential rotation are shown in Table 1. They are defined as

∆
(r)
Ω

=
Ωeq −Ωbot

Ωeq
, (21)

∆
(60◦)
Ω

=
Ωeq −Ω60◦

Ωeq
, (22)

respectively. Here, Ωeq, Ωbot, and Ω60◦ are the angular veloci-
ties at the equator near the surface, at the equator near the bot-

Fig. 5. Mean rotation rate averaged over the last 80 yr of the simulation
and normalized to the rotation rate of the star. 〈...〉t denotes the average
over time.

tom of the convective zone, and near the surface at a latitude of
60◦, respectively. The time-averaged radial differential rotation
remains practically the same within each set. The time-averaged
radial and latitudinal differential rotation only changes apprecia-
bly in run D3 by a factor of four and two, respectively, where we
enhanced the centrifugal force. We fail to find strong evidence
for a direct effect of the centrifugal force from the time aver-
ages, however. We also show the rms values of the fluctuations
(instantaneous minus average) of ∆

(r)
Ω

and ∆
(60◦)
Ω

in the last two
columns of Table 1. In general, there is a tendency of increased
fluctuations when the centrifugal force is included and when its
amplitude is larger.

Observations of the rapidly rotating K2 dwarf V471 Tau,
which is a PCEB rotating at about 50 times faster than the
Sun, show that it has a solar-like differential rotation (Zaire et al.
2022). The surface differential rotation is about ∆

(60◦)
Ω

= 3.7 ×
10−3, as measured from the shearing of brightness inhomo-
geneities (Stokes I), and ∆

(60◦)
Ω

= 2.6 × 10−3 from magnetic
structures (Stokes V). The sign of the differential rotation agrees
with our simulations, and the amplitude here is about ten times
smaller. We note, however, that in some cases, the instantaneous
value of ∆

(60◦)
Ω

can be as high as 10−3.

3.2. Gravitational quadrupole moment

We analyzed the xx-component of the gravitational quadrupole
moment for runs C1, C2, and C3 and for runs D1, D2, and D3.
It is defined as

Qi j = Ii j −
1
3
δi jTrI, (23)

where

Ii j =

∫
ρ(x)xix jdV (24)

is the inertia tensor, with ρ being the density, and xi, x j are Carte-
sian coordinates. The time evolution of Qxx for all runs is shown
in Fig. 6. Their yy- and zz-components evolve very similarly, as
demonstrated in Navarrete et al. (2020). The average quadrupole
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Fig. 6. Qxx component of the gravitational quadrupole moment as a
function of time for all runs.

Table 2. Summary of the rms value and standard deviation of the
quadrupole moment obtained in the simulations.

Run rms [kg m2] σ [kg m2]

C1 9.44(39) 2.19(39)
C2 8.25(39) 2.14(39)
C3 7.70(39) 2.08(39)
D1 1.76(40) 6.38(38)
D2 1.71(40) 5.94(38)
D3 1.02(40) 1.66(39)

Notes. Parentheses indicate powers of ten.

moment and its standard deviation are summarized in Table 2 for
each simulation.

For series C with the somewhat lower rotation rate, the aver-
age value of the quadrupole moment appears to be slightly lower
(∼7−9 × 1039 kg m2) than in series D (∼1−2 × 1040 kg m2),
while the standard deviation appears to be larger for series C
(∼2 × 1039 kg m2) than for series D (∼6−10 × 1038 kg m2).
Within the range of uncertainty, the mean value and the varia-
tion appear to be similar within the set of simulations C1, C2,
and C3, as well as within the set of simulations D1, D2, and
D3. This is to say that the centrifugal force does not appear to
affect the mean value of the quadrupole moment very strongly.
The standard deviation appears to be almost unaffected by the
centrifugal force within set C. Some more coherent variations
are visible in run D2 and particularly in run D3, where the cen-
trifugal force is the strongest of all runs. We note further that the
drop of the mean quadrupole moment value in run D3 around
t = 100 yr coincides with a decrease in the mean radial magnetic
field around the same time, which is shown in Fig. 7. The mag-
netic field structure and its time evolution is clearly different in
all simulations, and we also find differences in simulations with
and without the centrifugal force. It is difficult to assess, how-
ever, whether the origin of this difference is essentially related to
a possible bimodality of the solutions or if the centrifugal force
specifically introduces a different type of behavior. Overall, the
results thus indicate that the stellar quadrupole moment is not
very sensitive to the centrifugal force.

4. Discussion and conclusions

We presented a series of numerical simulations with which we
investigated stellar dynamos of solar-mass stars with angular
velocities of 20 and 30 times the solar rotation. The simula-

tions were performed using the enhanced luminosity method
(Brandenburg et al. 2005; Käpylä et al. 2013; Navarrete et al.
2020) to avoid prohibitively large gaps in the relevant timescales.
This entails the use of correspondingly enhanced rotation rates
to ensure a realistic Coriolis number in the simulations, which is
required to reach realistic magnitudes of the drivers of dynamo
action, such as the α and Ω effects. We included and varied the
strength of the centrifugal force in these simulations, including
cases without the centrifugal force or where the strength of the
centrifugal force was enhanced by an order of magnitude.

The centrifugal force in general causes perturbations during
the nonlinear evolution, so that the models evolve differently in
the details, although it is hard to identify clear systematic effects.
We note in particular that the averaged radial density profile of
the stars remains almost unchanged, while the density difference
between the equator and high latitudes (60◦) changes by a rela-
tive amount of 10−4. We see some difference between the dis-
tribution of axisymmetric and nonaxisymmetric modes of the
dynamo, and the convective power spectra are affected by the
strength of the angular velocity, but not so much by the cen-
trifugal force. Except for the behavior of the density difference
(Fig. 1), we found no clear systematic effects that were due to
the centrifugal force.

We similarly find that the mean and standard deviation of
the quadrupole moment depend more strongly on the angular
velocity, while the influence of the centrifugal force is weak
or almost nonexistent, even in the simulation in which the cen-
trifugal force term is enhanced by an order of magnitude. This
is highly relevant because in the original models proposed by
Applegate (1992), the centrifugal force term was supposed to
give rise to the variation in stellar quadrupole moment, while
here we find similar variations regardless of the presence of the
centrifugal force. This suggests that the centrifugal force plays
only a minor role in causing this variation, as the overall flow
patterns within the star are driven by more complex dynamics
resulting from the nonlinear evolution of the system. Adopting
the parameters of V471 Tau (Völschow et al. 2016) and inserting
the quadrupole variations that we find here into the framework
of Applegate (1992; see Navarrete et al. 2022), that is,

∆P
P

= −9
∆Qxx

Ma2 , (25)

where ∆P/P is the variation of the period of the binary, ∆Qxx
is the variation of the quadrupole moment, M is the stellar
mass, and a is the binary separation, we obtain period varia-
tions of the order of 10−8...10−9, whereas the amplitude of the
period variation of close binaries is around 10−6...10−7 (see,
e.g., Völschow et al. 2018), and about 8.5 × 10−7 for V471 Tau
(Zaire et al. 2022). While the original model was useful to moti-
vate the possible origin of the fluctuations via magnetic activity,
it appears to have difficulties overall in explaining the observed
magnitude of the variations, and the centrifugal force is unlikely
to be the main driver of the variations.

As in our previous studies, we chose to apply our results to
V471 Tau alone because of the similarities between the exten-
sion of the convective zones of our model and the real K2 dwarf.
We can roughly rescale the gravitational quadrupole moment
variations obtained here to a target star of mass M̃ and radius R̃
by assuming that the quadrupole moment scales with the stellar
inertial moment, that is,

∆Q̃xx =
M̃R̃2

MR2 ∆Qxx, (26)
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Fig. 7. Mean (azimuthally averaged)
radial magnetic field near the surface for
all runs.

where M and R are the mass and radius of our simulated star.
Choosing the parameters of NN Ser of M̃ = 0.111M�, R̃ =
0.149R�, and a = 0.934R� (Völschow et al. 2016) yields

∆P
P

= 2.34 × 10−9, (27)

which is a few hundred times lower than the value estimated
from observations (Völschow et al. 2016). This number should
be taken with extreme caution, however. A potential error source
is the missing effect of rotation in Eq. (26). The value of ∆Q̃xx is
a rather crude estimate and results from self-consistent simula-
tions that will be presented elsewhere.

As in previous work (e.g., Navarrete et al. 2020, 2022), our
simulations confirm that MHD simulations of stellar dynamos
naturally produce an evolution of the stellar quadrupole moment,
including one varying and one approximately constant com-
ponent. The time-varying component may be somewhat too
small to explain the observed ETVs. As suggested in mod-
els by Applegate (1989) and Lanza (2020), a roughly constant
component might produce the variations caused by spin-orbit
coupling via libration or circulation (see also the discussion in
Navarrete et al. 2022). As our simulations indeed show a mean
and a fluctuating part of the quadrupole moment, the observed
real variation may well consist of a superposition of the two
components, where the relative strength may depend on the spe-
cific system and its parameters. As has been demonstrated by
Navarrete et al. (2020), the presence of magnetic fields is crucial
because purely hydrodynamic simulations only produce short-
term variations on the sound-crossing timescale of the star, but
no longer-term variations on timescales of years or decades.

From the results obtained here, we thus conclude that nei-
ther the thin-shell model by Applegate (1992) nor the finite-shell
model by Brinkworth et al. (2006) correctly describes the origin
of the quadrupole moment variation because they both assume it
to originate in the centrifugal force and in an internal redistribu-
tion of the angular velocity, while in our simulations, a change
in centrifugal force term does not lead to any appreciable change
in the mean or fluctuating component of the quadrupole. The
physics causing these variations thus requires modeling the stel-
lar dynamo with compressible MHD in three dimensions.

Another possibility is given by hybrid solutions in which
ETVs receive contributions of magnetic origin and from plan-
ets. Mai & Mutel (2022) considered such a scenario for three
PCEBs as neither planets nor the Applegate mechanism can
fully account for ETVs. We conclude by encouraging studies of
the detection of circumbinary planets around PCEBs as well as
Zeeman-Doppler imaging of their main-sequence components.
The combination of these subjects will help us constrain the

planetary orbits and masses, and to understand to which extent
we can use ETVs to study stellar magnetic fields.
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