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ABSTRACT

Context. The possibility to detect circumbinary planets and to study stellar magnetic fields through eclipsing time variations (ETVs)
in binary stars has sparked an increase of interest in this area of research.
Aims. We revisit the connection between stellar magnetic fields and the gravitational quadrupole moment Qxx and compare different
dynamo-generated ETV models with our simulations.
Methods. We present magnetohydrodynamical simulations of solar mass stars with rotation periods of 8.3, 1.2, and 0.8 days and
perform a detailed analysis of the magnetic and quadrupole moment using spherical harmonic decomposition.
Results. The extrema of Qxx are associated with changes in the magnetic field structure. This is evident in the simulation with a rotation
period of 1.2 days. Its magnetic field has a more complex behavior than in the other models, as the large-scale nonaxisymmetric field
dominates throughout the simulation and the axisymmetric component is predominantly hemispheric. This triggers variations in the
density field that follow the magnetic field asymmetry with respect to the equator, affecting the zz component of the inertia tensor,
and thus modulating Qxx. The magnetic fields of the two other runs are less variable in time and more symmetric with respect to the
equator, such that the variations in the density are weaker, and therefore only small variations in Qxx are seen.
Conclusions. If interpreted via the classical Applegate mechanism (tidal locking), the quadrupole moment variations obtained in the
current simulations are about two orders of magnitude below those deduced from observations of post-common-envelope binaries.
However, if no tidal locking is assumed, our results are compatible with the observed ETVs.

Key words. magnetohydrodynamics (MHD) – dynamo – convection – turbulence – stars: activity – binaries: eclipsing

1. Introduction

Post-common-envelope binaries (PCEBs) are commonly com-
posed of a white dwarf and a low-mass main-sequence star.
Observations of eclipses in these systems reveal deviations from
the calculated eclipsing times in approximately 90% of these
systems (Zorotovic & Schreiber 2013), with binary period vari-
ations on the order of 10−6−10−7 modulated over periods on the
order of decades.

The two main explanations, although not mutually exclu-
sive, are the planetary hypothesis (Brinkworth et al. 2006;
Völschow et al. 2014) and the Applegate mechanism (Applegate
1992; Lanza et al. 1998; Völschow et al. 2018; Lanza 2020). In
the planetary hypothesis, sufficiently massive planets can force
the barycenter of the binary to change its location as they orbit,
which would then explain the observed-minus-calculated (O−C)
diagram of the eclipsing times. On the other hand, the Applegate
mechanism explains the variations via the connection between
stellar magnetic fields and the gravitational quadrupole moment
Q. The idea behind this mechanism is that when Q increases,
the gravitational field also increases. For this to happen, there
must be a redistribution of angular momentum within the star.
When angular momentum is carried to the outer parts of the
convective zone (CZ), these layers rotate faster and, overall, the

star becomes more oblate, which is reflected by an increase in
the gravitational quadrupole moment. As there is no angular
momentum exchange between the orbit and the star, the orbital
velocity increases and the radius decreases in order to maintain
the angular momentum of the binary. Thus, the orbital period
shortens. In order for this mechanism to work, Applegate (1992)
invoked the presence of a cyclic subsurface magnetic field on the
order of 10 kG which is responsible for redistributing the internal
angular momentum of the star.

Confirming the planetary hypothesis requires a detection of
the proposed circumbinary bodies in PCEBs either by directly
imaging them, as attempted by Hardy et al. (2015), or via indi-
rect methods such as those employed by Vanderbosch et al.
(2017). However, these studies did not detect the proposed third
body, a brown dwarf, in V471 Tau, which is a PCEB with a Sun-
like main-sequence star and a white dwarf. It was the system
Paczynski (1976) used to develop the theory of PCEB formation.
Direct modeling of the Applegate mechanism is challenging,
and targeted numerical simulations that may help to under-
stand observations have been lacking. Navarrete et al. (2020)
presented the first self-consistent 3D magnetohydrodynamical
(MHD) simulations of stellar magneto-convection addressing
this problem. In that study, the time evolution of the gravita-
tional quadrupole moment and its correlation with the stellar
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magnetic field and rotation was studied using two simulations
of a solar mass star with three and twenty times solar rotation,
corresponding to rotation periods of 8.3 and 1.2 days. However,
the centrifugal force, a key ingredient in the original Applegate
mechanism, was not included in these simulations. Nevertheless,
there were still significant temporal variations of Q due to the
response of the stellar structure to the dynamo-generated mag-
netic field. Such variations were absent in hydrodynamical sim-
ulations, confirming their magnetic origin.

Recently, Lanza (2020) presented an alternative to the Apple-
gate mechanism by extending the earlier work of Applegate
(1989). He assumed the presence of a persistent nonaxisymmet-
ric magnetic field inside the CZ of the main-sequence star that
was modeled as a single flux tube lying at the equatorial plane.
The density is lower within the magnetic region in comparison
to the rest of the CZ, and the effects of the magnetic field were
modeled as two point masses lying on a line perpendicular to the
axis of the flux tube at the equator. By further assuming that the
star is not tidally locked with the primary, this nonaxisymmet-
ric contribution to the quadrupole moment exerts an additional
force onto the companion. Applegate (1989) and Lanza (2020)
identified two possible scenarios: the libration model, where the
orientation of the flux tube oscillates around a fixed position, and
the circulation model, where the axis of the flux tube changes in a
monotonic way. These models reduce the energetic requirements
by a factor of 102 to 103 in comparison to the Applegate mech-
anism, which is much more restrictive from an energetic point
of view (see e.g., Brinkworth et al. 2006; Völschow et al. 2016,
2018; Navarrete et al. 2018). Previous models generally require
luminosity variations on the order of 10%, whereas the improved
model of Lanza (2020) reduces the energy requirement by a fac-
tor of 102−103.

The transition to predominantly nonaxisymmetric large-
scale magnetic fields in solar-like stars for rapid rotation was
investigated by Viviani et al. (2018) with the same model as
that used by Navarrete et al. (2020). They found that the dom-
inant dynamo mode switches from axi- to nonaxisymmetric at
roughly three times the solar rotation rate. However, this study
also showed that the dominant dynamo mode depends on the
resolution of the simulations such that rapidly rotating models at
modest resolutions were again more axisymmetric. In the present
study we revisit both simulations presented in Navarrete et al.
(2020) with a more detailed analysis and include an additional
run to explore the importance of (non-) axisymmetric mag-
netic fields in the modulation of the gravitational quadrupole
moment. The main goal of this study is to investigate whether
dynamo-generated quadrupole moment variations can lead to the
observed period variations and to compare the classical Apple-
gate machanism with the one of Lanza (2020) by means of our
simulations. The dynamo solution is particularly sensitive to the
rotation rate, which is the parameter we focus on in the present
study.

In Sect. 2 we present the model and the methods that we use.
The results are presented in Sect. 3 and a more in-depth discus-
sion follows in Sect. 4. The conclusions are drawn in Sect. 5.

2. The model

The model employed here is the same as that described in
Käpylä et al. (2013) and Navarrete et al. (2020). We solve the
compressible MHD equations in a spherical shell configuration
resembling the solar convection zone with the Pencil Code1

1 https://github.com/pencil-code

(Pencil Code Collaboration 2021). The equations are

∂A
∂t

= u × B − µ0ηJ, (1)

D ln ρ
Dt

= −∇ · u, (2)

Du
Dt

= g − 2Ω0 × u +
1
ρ

(J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds
Dt

=
1
ρ

[
−∇ ·

(
Frad + FSGS

)
+ µ0ηJ2

]
+ 2νS2, (4)

where A is the magnetic vector potential, u is the velocity field,
B = ∇ × A is the magnetic field, and J = µ−1

0 ∇ × B is the elec-
tric current density where µ0 is the vacuum permeability. Also,
D/Dt = ∂/∂t+u ·∇ is the convective derivative, and ρ is the den-
sity. Frad = −K∇T is the radiative flux and FSGS = −χSGSρT∇s
is the subgrid-scale (SGS) flux. The former accounts for the
flux coming from the radiative core to the CZ whereas the lat-
ter represents the unresolved turbulent transport of heat. K is the
radiative heat conductivity and χSGS is the turbulent entropy dif-
fusivity. s is the specific entropy, p is the pressure, and T the
temperature. We assume an ideal gas law, that is,

p = (γ − 1)ρe, (5)

where γ = cp/cV = 5/3 is the ratio of specific heats at constant
pressure and volume, and e = cVT is the specific internal energy.
The traceless rate-of-strain tensor, S, is defined as

Si j =
1
2

(ui; j + u j;i) −
1
3
δi j∇ · u, (6)

where semicolons denote covariant differentiation. g ∝ r̂/r2 is
the gravitational acceleration. The rotation vector is given by
Ω0 = (cos θ,− sin θ, 0)Ω0.

2.1. Initial and boundary conditions

The thermodynamic initial state is isentropic. The density profile
follows from hydrostatic equilibrium. The simulations are char-
acterized by a number of input parameters. These are the energy
flux at the bottom, the angular velocity, viscosity, magnetic diffu-
sivity, and the radiative and turbulent heat conductivities and the
radial profiles of the latter two. We keep all of them fixed except
for the angular velocity (see Sect. 2.3). Velocity and magnetic
fields are initialized with small-scale low-amplitude Gaussian
noise perturbations. These have amplitudes of 0.25 m s−1 and
4 G, respectively.

The computational domain is given by 0.7R ≤ r ≤ R,
θ0 ≤ θ ≤ π − θ0, 0 ≤ φ ≤ 2π, for the radial, latitudinal, and lon-
gitudinal coordinates, respectively, with θ0 = π/12. Both radial
boundaries are impenetrable and stress-free for the flow. The bot-
tom boundary is a perfect conductor and the magnetic field at
the surface is radial. The upper boundary follows a blackbody
condition. The latitudinal boundaries are stress-free and perfect
conductors. The derivatives of the density and entropy are zero
on both latitudinal boundaries. This implies that there is no heat
flux through these surfaces.

The modeled star is assumed to have one solar mass with
a convective envelope covering 30% of the stellar radius. The
simulations labeled as Run A and Run B are run3x and run20x
presented in Navarrete et al. (2020). The main difference is that
a significantly longer (over 160 instead of 85 years) time series
is available for Run B. Furthermore, we perform a more in-depth
analysis of both simulations and include a third simulation,
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labeled as Run C, to ascertain the significance of the non-
axissymmetric magnetic fields for the gravitational quadrupole
moment (see Sect. 3). Runs A and B have a resolution of
128×256×512 in the radial, latitudinal, and azimuthal directions
respectively, and Run C has a resolution of 128 × 288 × 512.

2.2. Spherical harmonic decomposition

To investigate the proposed connection between the nonaxisym-
metric component of the magnetic field and the fluid density,
we perform the same decomposition as in Viviani et al. (2018)
for the radial magnetic field and density field at various radial
depths (see Figs. B.1–B.4 for snapshots of the first and second
nonaxisymmetric modes near the surface of the three runs). A
function f = f (θ, φ) can be written as

f (θ, φ) =

lmax∑
l=0

l∑
m=−l

f̃ m
l (θ, φ)Ym

l (θ, φ), (7)

where

f̃ m
l =

∫ 2π

0

∫ π−θ0

θ0

f (θ, φ) Ym∗
l sin θ dθ dφ. (8)

For the radial magnetic field Br(θ, φ), we impose the condition
(see Krause & Rädler 1980)

B−m
r,l = (−1)mBm∗

r,l , (9)

and because the same property applies to the spherical harmonics
Ym

l , we have

Br(θ, φ) =

lmax∑
l=1

B0
l,rY

0
l + 2 Re

 lmax∑
l=1

l∑
m=1

Bm
l,rY

r
l

 . (10)

The term containing l = 0 has been dropped because it violates
solenoidality of the magnetic field.

2.3. Simulation parameters

Each run is characterized by the Taylor, Coriolis, fluid and mag-
netic Reynolds numbers, and fluid, SGS and magnetic Prandtl
numbers. These are defined as

Ta =

[
2Ω0(0.3R)2

ν

]2

, Co =
2Ω0

urmsk1
, (11)

Co(ω) =
2Ω0

ωrms
, Re =

urms

νk1
, ReM =

urms

ηk1
, (12)

Pr =
ν

χm
, PrM =

ν

η
, PrSGS =

ν

χm
SGS

, (13)

where ν is the viscosity, urms the root-mean-square velocity,
Co(ω) is an alternative definition of the Coriolis number based
on the rms vorticity, k1 = 2π/0.3R an estimate of the wavenum-
ber of the largest convective eddies, η the magnetic diffusivity,
and χm

SGS is the SGS entropy diffusion at r = 0.85 R�.

3. Results

We present the results of three runs, labeled as A, B, and C, with
rotation periods of 8.3, 1.2 days, and 0.8 days, corresponding to
3, 20, and 30 times the solar rotation rate. We keep all other sys-
tem parameters fixed. We summarize input and diagnostic quan-
tities that characterize each simulation in Table 1.

3.1. Magnetic activity and quadrupole moment evolution

We begin our analysis by comparing the time-dependent diag-
nostics of magnetic fields and the gravitational quadrupole
moment. In Fig. 1 we show the azimuthally averaged radial mag-
netic field (Br) near the surface of the stars at r/R = 0.98 (color
contours), along with the evolution of the xx component of the
gravitational quadrupole moment Q (black lines)2. The latter is
defined as

Qi j = Ii j −
1
3
δi j TrI, (14)

where

Ii j =

∫
ρ(x)xix jdV (15)

is the i j component of the inertia tensor expressed in Carte-
sian coordinates and ρ(x) is the density. All of the simulations
show low-amplitude variations of Qxx on a timescale of roughly
0.2 years. These are attributed to sound waves and have a purely
hydrodynamic origin (Navarrete et al. 2020). Hence such sig-
nals are left out of the data in this study by working with low-
cadence snapshots and interpolating the data with a cubic inter-
polator. In Run A, the variations of Qxx are small, on the order
of 1039−2×1039 kg m2 and by visual inspection we estimate that
they have a similar period (roughly 6−8 years) as the axisym-
metric part of the magnetic field. Run B shows a larger ampli-
tude long-term variation of Qxx that repeats at least once in the
data. Roughly half of the data for Run B, up to about 80 years,
was presented in Navarrete et al. (2020). The steady decrease of
Qxx between t ≈ 30 to t ≈ 85 years was interpreted as a tran-
sient due to insufficient thermodynamic and magnetic saturation.
However, with the longer time series we see that the quadrupole
moment is modulated on a timescale of about 80 years. It also
appears that Qxx is roughly correlated to Br: low values of the
quadrupole moment approximately coincide with times when Br
is weak on both hemispheres (t = 70−85 and t = 140−160 years,
respectively). The cycle is perhaps starting again at t = 160 as
the magnetic activity appears to be resuming with a correspond-
ing change in Qxx. The largest variation of Qxx occurs between
t = 100−155 years, with an amplitude of 1040 kg m2. It corre-
sponds to the largest variation of Qxx of the three runs. Over-
all, the gravitational quadrupole moment appears to follow the
radial magnetic field strength near the surface of the star inde-
pendently of the hemispheric asymmetry. In contrast to the other
two runs, diagnostics for Qxx in Run C are available starting at
t = 0 yr. The quadrupole moment in this run remains more or
less constant and only starts to decrease after the magnetic field
approaches the saturated regime at t ≈ 10 yr. The magnetic field
back-reacts and re-adjusts the thermodynamic quantities, such as
density, after which Qxx settles to a state with smaller variations
around a mean value of 1.70 × 1040 kg m2. These variations are
about half of those in Run A. As seen in Fig. 1, the axisymmet-
ric part of Br is similar in Runs A and C, but clearly different
in Run B. In the first two, Br migrates toward higher latitudes
in a regular fashion and in the latter the dynamo is more hemi-
spheric such that activity alternates between both hemispheres
seemingly every 50 to 60 years. Overall, cycles of Qxx in Runs A
and C follow more closely the polarity reversals of the magnetic

2 We note that the values of Qxx for Runs A and B differ from
Navarrete et al. (2020). This is because in that study, Izz was erroneously
calculated (see Navarrete et al. 2021). However, this difference does not
change their conclusions.
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Table 1. Summary of simulation parameters.

Run Ω/Ω� Prot (days) Ta Co Co(ω) Ma Re ReM Pr PrM PrSGS ∆t (yr)

A 3 8.3 5.68 × 107 2.8 1.28 6.46 × 10−2 66.6 66.6 58 1.0 2.5 39
B 20 1.2 2.52 × 109 62.4 12.4 3.29 × 10−2 20.3 20.3 58 1.0 2.5 138
C 30 0.8 5.68 × 109 139.1 22.4 2.06 × 10−2 13.6 13.6 58 1.0 2.5 145

Notes. Ω/Ω� is the rotation rate in units of the mean solar angular velocity. Co and Co(ω) are the Coriolis numbers, Ma is the volume and time
averaged Mach number, Re and ReM are the fluid and magnetic Reynolds numbers. Pr, PrM, and PrSGS are the fluid, magnetic, and subgrid scale
Prandtl numbers, respectively. ∆t is the total simulated time.

Fig. 1. Azimuthally averaged radial magnetic field (Br) near the surface
of the domain at r = 0.98R as a function of latitude and time for Run A
(top, Prot = 8.3 d), Run B (middle, Prot = 1.2 d), and Run C (bottom,
Prot = 0.8 d). Qxx for each run is shown from the time periods where
this diagnostic is available. The color scale of Br in each panel has been
clipped at ±8 kG.

field. There are also such cycles in Run B. However, they are hid-
den by the longer cycle that follows the migration of the hemi-
spheric component of the magnetic field.

In Fig. 2 we show instantaneous snapshots of the radial mag-
netic field near the surface of the three runs at the times of inter-
est, that is, maxima (minima) of Qxx at top (bottom) row. These
correspond to t = 62, 74 yr for Run A, t = 110, 155 yr for Run B,
t = 64, 98 yr for Run C. In Run A, a predominantly m = 1
large-scale mode is seen at high latitudes but this is subdomi-
nant in comparison to the axisymmetric (m = 0) component (see
Appendix B). In Run B there is a dominant m = 1 mode on
the northern hemisphere, while a predominantly m = 2 mode
dominates on the southern hemisphere at the maximum. At the
minimum of Qxx (middle panel in the lower row), Br is symmet-
ric with respect to the equator with a dominating m = 1 mode on
both hemispheres. These large-scale structures cover the entire
hemispheres from the equator to the latitudinal boundaries. This
is qualitatively similar to Run H of Viviani et al. (2018) and
Run C of Cole et al. (2014). As suggested by Fig. 1, a similar
pattern repeats for Run B at t ≈ 36 yr and t ≈ 75 yr but in oppo-
site hemispheres. Run C is similar to Run B in the sense that
the large-scale nonaxisymmetric structures are promiment over
a large region, but the m = 1 and m = 2 modes appear to be
similar in strength. These modes appear to alternate between the

hemispheres but the variations in the gravitational quadrupole
moment are weak in this case in comparison to Run B. However,
the low-order nonaxisymmetric fields in Run C are of the same
order of magnitude as the m = 0 mode whereas in Run B the
m = 1 mode is clearly stronger than the axisymmetric fields. A
possible explanation of the smaller cycles of Qxx found in Run C
can be attributed to the dynamo solution. Slow rotators tend to
produce dominant m = 0 modes. Faster rotators typically show
a predominant m = 1 mode although sometimes the m = 0 com-
ponent can become dominant again at very high rotation rates if
the convection is only weakly supercritical (Viviani et al. 2018).
It is plausible that this is happening in our Run C. These results
suggest that a dominant nonaxisymmetric magnetic field with
hemispheric asymmetry is associated with the strongest varia-
tions of Q.

3.2. Density variations and structural changes due to
magnetic fields

The variations of the gravitational quadrupole moment are
related to changes in the mass distribution within the star as can
be seen from Eqs. (14) and (15). Snapshots of the density from
all three runs near the surface of the star are shown in Fig. 3.
As before, the shown times correspond to maxima (top row) and
minima (bottom row) of Qxx. Snapshots of the m = 1 and m = 2
modes of density are show in the Appendix B.

In Run A there is an overall change in density between the
two times. At t = 62 yr (top panel), when the gravitational
quadrupole moment is larger, there are no noticeable large-scale
nonaxisymmetric features, whereas when Qxx is at a minimum
(t = 74 yr), weak nonaxisymmetric features appear. This can be
seen from the two blue stripes around θ = ±30◦ where the overall
density decreases with patches of increased (decreased) density
around φ = 270◦ (φ = 60◦). Closer to the poles and near the
equator the average density increases but no clear nonaxisym-
metric features are present. In Run B we identify a few character-
istics. First, when the quadrupole moment is larger at t = 110 yr,
there is a clear asymmetry with respect to the equator, such that
the density is larger close to the north pole. As Qxx decreases, the
asymmetry disappears, and nonaxisymmetric structures become
visible at 230◦ < φ < 340◦ and θ = ±40◦. As the magnetic field
changes its configuration from one that is dominated by an m = 1
mode only at the northern hemisphere to predominantly m = 1
on both hemispheres (see Fig. 2), the density field reacts and also
changes to a nonaxisymmetric configuration with a correspond-
ing change in the gravitational quadrupole moment. In contrast,
large-scale density variations in Run C between the two times
are clearly weaker. The density field at the surface remains sym-
metric with respect to the equator as well as in the azimuthal
direction.
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Fig. 2. Instantaneous radial magnetic field at r = 0.98R for each run at two times. Top (bottom) row: corresponds to a maxima (minima) of Qxx.

To investigate the importance of equatorial asymmetry on
the gravitational quadrupole moment, we define the equatorially
asymmetric part of density as

ρasym(r, θ, φ) =
ρ(r, θ, φ) − ρ(r,−θ, φ)

2
(16)

and compute the root mean square according to

ρs,rms =
(
〈ρ2

asym〉θφ

)1/2
. (17)

The time evolution of ρs,rms, together with Qxx, is shown in the
top row of Fig. 4. In Run A (left panel) there is an anticorre-
lation between the two. However, in the case of Run B (mid-
dle panel) there is a positive correlation between the two but
with an apparent time delay. The rms value of ρs,rms lags behind
Qxx by roughly 10 yr for example near the extrema between 80
and 100 yr. In Run C both the variations of the density and Qxx
are weak. It is also less clear whether a correlation between the
two exists. The variations of ρs,rms are between 6 to 10 times
larger in Run B than in Runs A and C, indicating that the for-
mer is in a different dynamo regime where the magnetic field
is more strongly coupled to the density field leading to stronger
quadrupole moment variations.

The differences in density with respect to the equator should
translate in variations of the moment of inertia aligned with the
rotational axis of the star, namely, Izz. The lower row of Fig. 4
shows the evolution of the three components of the inertia tensor
that contribute to Qxx, which is computed from

Qxx = Ixx −
1
3

(
Ixx + Iyy + Izz

)
. (18)

The vertical component Izz is always smaller than the two other
components. In Runs A and C all components of Ii j have com-
parable variations, whereas in Run B (middle panel) the vari-
ations of Izz are significantly larger. This coincides with larger
variations of ρm=1,2 in this run. In Run B a maximum of Qxx
coincides with a minimum of Izz. This corresponds to the star
rotating slightly faster at maxima (minima) of Qxx (Izz).

To see such differences, we compute the azimuthally aver-
aged rotation profiles

Ω(r, θ) = Ω0 +
uφ(r, θ)
r sin θ

(19)

for all runs, average them over time, and show the deviations
from such averages during the two times of interest in Fig. 5.
There are minor differences in the rotation profiles of Runs A and
B between maxima and minima of Qxx, while almost no differ-
ences are observed in Run C. Runs A and B have a larger differ-
ence between angular velocities of polar and equatorial regions
at a minima of Qxx (lower panels), but an accelerated northern
pole is seen in the top panel of Run B. A large difference in dif-
ferential rotation implies that the star would deform and adopt
an ellipsoidal shape as a consequence of the centrifugal force,
adding a further contribution to the quadrupole moment. How-
ever, as we have fixed boundary conditions, we cannot model
such a reaction. All of our runs show a solar-like rotation profile
with equatorial regions rotating faster than the poles as a con-
sequence of Coriolis numbers above the transition region from
antisolar to solar-like differential rotation. This transition occurs
around Co & 1 (see e.g., Gastine et al. 2014; Käpylä et al. 2014)
whereas the rotation profile approaches solid body rotation for
rapid rotation (e.g., Viviani et al. 2018; Käpylä 2021).

The energies of the axisymmetric and first two nonaxisym-
metric modes of Br are shown in the lower row of Fig. 6 and a
scatter plot between Bm=i

r and Qxx is shown in the upper row.
In Run A (first column) the axisymmetric m = 0 is domi-
nant, which seems to be anticorrelated with Qxx. There are short
episodes where the m = 0 and m = 1 modes have comparable
energies. The latter is correlated to Qxx. In Run A, the m = 2
mode is always subdominant. From the scatter plot we see that
no noticeable increase in magnetic energy is needed to reach a
larger quadrupole moment. The situation in Run B is different
as there is a persistent m = 1 mode that dominates throughout
the simulation with minor fluctuations in its energy. The axisym-
metric mode seems to be correlated to Qxx. This is because, as
explained in the previous section, it produces equatorially asym-
metric density fluctuations that modulate the moment of inertia
aligned with the rotation axis of the star. The second nonaxisym-
metric mode (m = 2) is as strong as the axisymmetric mode and
also correlates with Qxx. Larger quadrupole moment values are
related to higher energies in the m = 0 and m = 2 modes. In
Run C all modes have similar energy levels, with m = 0 being
slightly stronger than the other two. The scatter plot reveals
that there is no relation between the magnetic energy and the
quadrupole moment.

To quantify the relation between magnetic field modes and
quadrupole moment, we perform a correlation analysis. We use
the Pearson correlation coefficient to study the linear correlation
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Fig. 3. Instantaneous snapshots of density at r = 0.98R for each run.

Fig. 4. Top row: Qxx (black) and rms value of the equatorically asymmetric part of density ρs,rms (yellow) according to Eq. (17) as functions of
time. Bottom row: time evolution of the diagonal components of the inertia tensor. First, second, and third columns correspond respectively to
runs A, B, and C.

between the density and magnetic fields. The coefficient between
a paired data (x, y) of n pairs is defined as

x|y =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (20)

where x̄ and ȳ are the sample mean and −1 ≤ x|y ≤ 1. A value of
x|y = 1 (x|y = −1) implies perfect (anti-)correlation.

The correlations between the gravitational quadrupole
moment and magnetic energy are calculated using the data pre-
sented in Fig. 6 and in this case the barred quantities in Eq. (20)
represent time averages of Qxx and Emag, whereas xi and yi are
the time-dependent quantities of Qxx (calculated over the whole
volume) and Emag (calculated over the surface layer). This is
shown in the second, third, and fourth columns of Table 2. In
general, we find correlations higher than 0.5 for the m = 1 mode
in Run A and for the m = 1 and m = 2 modes in B.

Next, we compute the correlation coefficients between the
mean surface density ρsurf and quadrupole moment, and ρsurf and
the magnetic energies. These are shown in the last four columns
of Table 2. In each run we find that the values of ρsurf |Qxx are
relatively large. This is due to the direct relation between the

density distribution and Qxx. The outer regions of the stars are
particularly important due to the x2 dependence of the inertia
tensor. As noted earlier, the dynamo solution in Run B alternates
between the two hemispheres and so does the density field. As
ρsurf increases, so does Izz and thus Qxx decreases (see Eq. (18)).
Overall, we see the clearest correlations in Run B.

The magnetic energy increases with the rotation rate as
expected, but this does not suffice to explain the variations in
the gravitational quadrupole moment. Overall, Run B has the
largest magnetic energy and Run A and C have comparable ener-
gies (see Table 3). However, Run C has smaller fluctuations in
Qxx which can be attributed to the fact that the variations of the
magnetic field do not result in significant density perturbations
relevant for the quadrupole moment.

3.3. Azimuthal dynamo waves

Azimuthal dynamo waves (ADWs) are magnetic structures that
migrate in the azimuthal direction. ADWs can be prograde or
retrograde and their propagation is unaffected by the differential
rotation of the star (see e.g., Krause & Rädler 1980; Cole et al.
2014; Viviani et al. 2018). The periods of ADWs are usually on
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Fig. 5. Deviations from the time-averaged mean angular velocity (Ω − 〈Ω〉t) normalized by the angular velocity of the frame of reference (Ω0) for
each run from the times indicated in the legends.

Fig. 6. Quadrupole moment, density, and moments of inertia. Top row: scatter plot of the magnetic field energy and the quadrupole moment.
Bottom row: time evolution of the gravitational quadrupole moment (black line) together with the magnetic energy contained in the axisymmetric
mode (m = 0, yellow), as well as the first (m = 1, red) and second (m = 2, blue) non-axisymmetric modes. Run A, Run B, and Run C are shown
in the left, middle, and right columns respectively.

Table 2. Correlation coefficients between the time series of the quadrupole moment and magnetic energy, mean surface density and quadrupole
moment, and mean surface density and magnetic energy.

Run Qxx|Em=0
mag Qxx|Em=1

mag Qxx|Em=2
mag ρsurf |Qxx ρsurf |E

m=0
mag ρsurf |E

m=1
mag ρsurf |E

m=2
mag

A −0.41 0.54 0.13 −0.67 0.20 −0.18 −0.07
B 0.38 −0.64 0.66 −0.94 −0.40 −0.53 −0.57
C 0.26 0.22 −0.34 −0.40 0.25 0.11 −0.11
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Table 3. Summary of some quantities of interest corresponding to data
shown in Fig. 1.

Run Qmax
xx Qmin

xx B
max
r B

min
r Emax

mag,total Emin
mag,total

A 2.25 1.94 8.65 −9.70 2.98 1.26
B 1.38 0.315 24.7 −19.7 3.98 2.28
C 1.80 1.54 16.8 −13.8 2.32 1.30

Notes. Qxx is in units of 1040 kg m2 and Br in units of kG. Emag,total is the
volume-averaged magnetic energy in units of 105 J m−3.

the order of a few years for slow rotators and of tens of years
for faster rotators (Viviani et al. 2018). This is comparable to the
period of the quadrupole moment variations of the present study.
We therefore briefly study ADWs. We take m = 1 and m = 2
modes of the radial magnetic field near the surface of each run
at latitude +60◦ and show the evolution of the field in Fig. 7 and
its phase in Fig. 8.

Run A has an m = 1 ADW that migrates in the retrograde
direction with a period of ∼8 years in particular after around t =
60 yr. Meanwhile, the m = 2 ADW has a similar amplitude with
no clear periodicity. In Run B there is a clear m = 1 wave which
migrates in the prograde direction. However, between 115 and
145 yr the migratory process is stalled for nearly thirty years. The
ADW in Run B has a period of roughly ∼80−100 years. There is
an m = 2 ADW but it is only noticeable during the first ∼40 years
of the simulation. In Run C there are two equally strong ADWs.
Both migrate in a prograde way with the difference that the period
of the m = 1 wave is shorter than the one of m = 2.

The evolution of the phase of the m = 1 mode correlates
well with the evolution of the gravitational quadrupole moment
in Runs A and B, whereas the second nonaxisymmetric mode is
noisier and does not correlate with Qxx. The phase of Bm=1

r does
not show any particular evolution in Run C, while for m = 2
the phase is constantly decreasing which is uncorrelated with
Qxx. The cases of Runs A and B point to an underlying relation
between a nonaxisymmetric dynamo mode and the gravitational
quadrupole moment evolution.

4. Discussion and implications

The Applegate mechanism (Applegate 1992) is based on the
redistribution of angular momentum throughout the star due to
the centrifugal force. More recently, Lanza (2020) presented a
new mechanism where the centrifugal force is no longer needed.
In this work the quadrupole moment is constant in the frame of
reference of the magnetically active star due to a time-invariant
nonaxisymmetric magnetic field modeled by a single flux tube.
The companion star experiences a time-varying nonaxisymmet-
ric gravitational quadrupole moment due to the assumption that
the active star is not tidally locked.

In our simulations we compute the gravitational quadrupole
moment in the rotating frame of reference of the star. The sim-
ulations thus provide a test whether magnetic activity can sig-
nificantly influence stellar structure. We stress that the physi-
cal process occurring here is not the classical Applegate mecha-
nism which is based on the centrifugal force, and which is not
included in our simulations. The results described in Sect. 3
show that the connection between magnetic fields and gravi-
tational quadrupole moment is quite complex. It is due to the
asymmetry of the magnetic field with respect to the equator
rather than due to nonaxisymmetry, which is particularly notice-

able in Run B. The three simulations we present differ only in the
rotation rate of the star and yet they present different scenarios
of quadrupole moment variations.

4.1. Behavior of the dynamo itself

Simulations of stellar magneto-convection have shown that
dynamo solutions depend mainly on the rotation rate of the star.
For example, Viviani et al. (2018) studied the transition from
axi- to nonaxisymmetric magnetic fields as a function of rota-
tion and found that the transition to nonaxisymmetry occurs for
Ω & 1.8Ω�. However, Viviani et al. (2018) found that at suffi-
ciently rapid rotation, the magnetic field returns to a predomi-
nantly axisymmetric configuration if the resolution is not high
enough. A similar sequence is also observed in the simulations
described in this paper. Run A is at a regime where the axisym-
metric mode is slightly stronger than the first nonaxisymmetric
mode. The rotation rate in Run B is 6.7 times greater than in
Run A and there the m = 1 mode dominates, while m = 0 and
m = 2 are comparable. In Run C, with 10 times faster rotation
than in Run A, the dominant mode is again m = 0. If the resolu-
tion was to be increased, corresponding to higher Reynolds num-
bers, it is possible that a nonaxisymmetric solution with stronger
quadrupole moment variations would be recovered.

Besides resolution effects, it is possible that Run B is in
a parameter regime where hemispherical dynamos are pre-
ferred; see, for example, Grote & Busse (2000), Busse (2002),
and Käpylä et al. (2010). Brown et al. (2020) reported a cyclic
single-hemisphere dynamo in a simulation of a fully convective
star, and mentioned that such dynamos are present in other simu-
lations with similar parameters. Käpylä (2021) presented a set of
simulations of fully convective stars where in a single run short
periods of hemispheric dynamo action were seen, but even in this
case the dynamo is predominantly present on both hemispheres.
It is important to explore this parameter regime in more detail
as it can potentially help to address the question of whether the
ETVs in PCEBs have a magnetic origin. If this is the main ingre-
dient, however, it would imply that PCEBs that show variations
in the O−C diagram are in this particular regime.

4.2. Classical Applegate mechanism

If we first consider the case where the eclipsing time variation
is due to a time-dependent quadrupole moment (classical Apple-
gate mechanism), the expected period variation due to a change
of the gravitational quadrupole moment can be computed from
(Applegate 1992)

∆P
P

= −9
∆Qxx

Ma2 = 2π
O−C
Pmod

, (21)

where ∆P/P is the amplitude of the orbital period modulation,
M the stellar mass, and a the binary separation, O−C is the
amplitude of the observed-minus-calculated diagram and Pmod
its modulation period. We choose V471 Tau as a reference sys-
tem with which we compare our results, The reason for this is
that its main-sequence star has a mass of M = 0.93 M� and
is thus structurally similar to the Sun and the current simula-
tions. It is also rotating at a speed that is computationally feasi-
ble to achieve, whereas in many other systems the main-seuqnce
stars have lower masses and rotation rates up to a hundred times
the one of the Sun. Our results are only applicate to PCEBs
where the magnetically active star has a Sun-like structure. This
is because our model is constructed to resemble such stars. We
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Fig. 7. Migration of the m = 1 (top row) and m = 2 (bottom row) modes of the radial magnetic field at the surface along the longitudinal direction.
for Run A (left), Run B (middle), and Run C (right).

Fig. 8. Time evolution of the phase of the m = 1 (top row) and m = 2 modes (bottom row) of radial magnetic field at φ = 180◦ for Run A (left
panels), Run B (middle panels), and Run C (right panels) in yellow. The black line corresponds to Qxx.

nevertheless note that this comparison is very approximate, as
for example the Reynolds numbers of a real stellar system can-
not be numerically reproduced.

For V471 Tau, the orbital separation is a = 3.3 R�
and there are two contributions to the orbital period modula-
tion that individually result in two orbital period modulations
(Marchioni et al. 2018). These are

(∆P/P)1 = 8.5 × 10−7, (22)

(∆P/P)2 = 4.5 × 10−7. (23)

The corresponding quadrupole moment variations are

∆Qxx,1 = 9.4 × 1041 kg m2, (24)

∆Qxx,2 = 4.5 × 1041 kg m2. (25)

For the purpose of comparing with the quadrupole moment
variations in simulations, we recall here that density fluctuations
and the quadrupole moment itself need to be scaled as explained
in Navarrete et al. (2020). They scale as

∆ρ ∼ L2/3
r , (26)

where Lr is the ratio between the luminosities in the simulation
and the target star, that is,

Lr =
Lsim

L?
, (27)

so the quadrupole moment is accordingly scaled as

Q? =
1

L
2/3
r

Qsim. (28)

Details of the scaling are presented in Appendix A.
In Run B the amplitude of the variation is ∆Qxx = 1.2 ×

1040 kg m2 corresponding to ∆P/P = 1 × 10−8. By adopting a
modulation period of Pmod = 80 yr, which corresponds to the
period of Qxx, we have an observed minus calculated value of
O−C = 4.7 s. This O−C amplitude is still four and thirty times
smaller than the values reported by Marchioni et al. (2018).
There are a few possible reasons behind this mismatch. First,
we are not including the centrifugal force and so the quadrupole
moment fluctuations are produced by the evolution of the mag-
netic field and the resulting redistribution of the density rather
than by the deformation of the star like in the Applegate mech-
anism. Secondly, the stars we are modeling have convective
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envelopes of 30% of the radius, whereas the main-sequence star
in the target system V471 Tau has a mass of 0.93 M� and there-
fore a slightly more extended CZ. In a deeper CZ it is possible
to perturb the density and the angular momentum distribution in
a larger portion of the star (Völschow et al. 2018), although we
expect this contribution to be very small. Lastly, we are impos-
ing sphericity which is especially important at the surface of the
star. Boundary conditions that dynamically react to the physical
quantities inside of the star may allow larger variations of the
quadrupole moment, especially if the star change its shape and
size.

4.3. Models without tidal locking

In the previous calculation of ∆P/P following Applegate (1992),
we made the implicit assumption of tidal locking and that the
stellar rotation axis is perpendicular to the plane of the orbital
motion. In this scenario, the x̂ axis points towards the com-
panion and thus it rotates together with the stellar spin. Under
those conditions, only the Qxx component of the gravitational
quadrupole moment contributes to the modulation of the binary
period (Applegate 1992). In contrast, in the scenario put forward
by Applegate (1989) and Lanza (2020), the star is not yet tidally
locked, and its companion effectively experiences a time-varying
quadrupole moment due to the relative rotation of the magneti-
cally active star. This holds even if the quadrupole moment in the
corotating frame of the star was constant. This implies then that
different components of Qi j contribute. In the simplified Lanza
(2020) scenario, the magnetic field is modeled as a permanent
single flux tube that lies at the equator and produces a nonax-
isymmetric density distribution and thus, a permanent nonax-
isymmetric gravitational quadrupole moment.

While there is a strong nonaxisymmetric magnetic field in
our Run B, it is stronger at mid- and at high latitudes rather than
at the equator. In our simulations, the choice of the x̂ and ŷ axes
in the equatorial plane along which the moments of inertia are
calculated is arbitrary, that is, as the companion star is not being
modeled. Once fixed, we perform rotations about the ẑ axis in
steps of π/16 up to π, and then we calculate the two moments of
inertia about the rotated axes. These axes would correspond to ŝ
and ŝ′ of Lanza (2020). The former is the rotated x̂ axis, and the
latter is the rotated ŷ axis. In Lanza (2020) ŝ is chosen to be along
the axis of symmetry of the magnetic flux tube, which is the only
magnetic structure in the CZ of the magnetically active star. In
our simulations the rotation is not unique as there is no single
radial magnetic field structure that extends from the bottom to
the surface of the CZ in our simulations that would otherwise
allow us to unequivocally choose ŝ. However, a clear radial mag-
netic structure at the equator is seen at t = 155 yr (see Fig. 9), but
magnetic fields with different structure and strength dominate
at different latitudes. In this configuration, the nonaxisymmetric
quadrupole moment is defined as T = Is − I′s, where Is and I′s are
the moments of inertia about the ŝ and ŝ′ axes. The moment of
inertia of the active star about the spin axis is Ip = Ixx + Iyy. The
order of magnitude of the period variations can then be estimated
as (Eq. (2) of Lanza 2020)

T
Ip
≈

4
3

(
MT

mS

) (
ma2

Ip

) (
P

Pmod

) ∣∣∣∣∣∆P
P

∣∣∣∣∣ , (29)

where MT is the total mass of the binary, mS is the mass of
the companion, m is the reduced mass, P is the orbital period,
and Pmod is the modulation period. We take the density fields
of Run B at t = 110 yr and t = 155 yr and compute the two

Fig. 9. Radial magnetic field of Run B at the equator at t = 155 yr. The
x̂ and ŷ axes lie at φ = 0◦ and φ = 90◦, respectively. The ŝ and ŝ′ axes
are obtained by performing clockwise rotations.

Fig. 10. Absolute value of ∆P/P as a function of separation angle α
between x̂ and ŝ for t = 110 yr (black dots) and t = 155 yr (yellow
triangles).

quadrupole moments T and Ip. By using Eq. (29) and the param-
eters of V471 Tau (see e.g., Hardy et al. 2015; Vaccaro et al.
2015) we can obtain an order of magnitude estimate of ∆P/P.
Figure 10 shows the absolute value of the amplitude of the orbital
period modulation as a function of separation angle α between
x̂ and ŝ for t = 110 yr (black dots) and t = 155 yr (yellow trian-
gles). |∆P/P| ranges between 1.5 × 10−7 and 1.5 × 10−6, which
contains the two contributions to the observed variations as well
as their sum (Marchioni et al. 2018). From our simulations we
get a value of Ip that is of the same order of magnitude as in
Lanza (2020), while T is about one order of magnitude larger
here. It is important to note that we have obtained T based on
a detailed 3D magneto-hydrodynamical simulation, while Lanza
(2020) simply calculated which T would be required to explain
the observed ETVs.

In general, the gravitational potential felt by the companion
can be written as (Applegate 1992; Lanza 2020)

Φ = −
GM

r
−

3G
2r3

∑
i, j

Qi jxix j

r2 , (30)

where G is the gravitational constant, M is the mass of the active
star, r is the distance between the center of the active star and the
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companion, Qi j is the quadrupole moment tensor, and x refers to
Cartesian coordinates. Writing out the summation explicitly and
expressing xi and x j in a spherical coordinate system (r, θ′, φ′)
with its origin coinciding with the center of the star, we arrive at

Φ = −
GM

r
−

3G
2r3

{
Qxx sin2 θ′ cos2 φ′

+ Qyy sin2 θ′ sin2 φ′

+ Qzz cos2 θ′

+ 2
(
Qxy sin2 θ′ cos φ′ sin φ′

+ Qxz sin θ′ cos θ′ cos φ′

+ Qyz sin θ′ cos θ′ sin φ′
)}
. (31)

The case of θ′ = π/2 and φ′ = 0 is analogous to the assump-
tions that the rotation axis is perpendicular to the plane of the
orbit and that the orbital motion is tidally locked, respectively.
By assuming only the former, Eq. (31) is reduced to

Φ = −
GM

r
−

3G
2r3

(
Qxx cos2 φ′

+ Qyy sin2 φ′ + 2Qxy cos φ′ sin φ′
)
. (32)

Here the effects of deviations from tidal locking can be mod-
eled by making φ′ time-dependent. There are two alternatives,
namely

φ′1 = α cos(ωt), (33)
φ′2 = ωt. (34)

In the former case, the companion is seen in the frame of refer-
ence of the rotating star as oscillating in the orbital plane with
amplitude α and angular velocity ω. In that case, φ′1 corresponds
to the analogous of the libration model. The latter expression
for φ′2 corresponds to the circulation model presented by Lanza
(2020). This introduces two further contributions to the binary
period variation that come from Qyy and Qxy (see Eq. (32)). In
Run B Qyy is, on average, the same as Qxx. Meanwhile, Qxy is
102−103 times smaller so it can be neglected. Thus,

Φ = −
GM

r
−

3G
2r3

(
Qxx cos2 φ′ + Qyy sin2 φ′

)
. (35)

In contrast to previous studies, we can directly calculate
each component of the gravitational quadrupole moment from
our simulations. In this case it is advantageous to use Eqs. (31)
and (32) rather than taking the limit of φ′ = 0. However, we
would need to use new expressions to derive ∆P/P considering
the libration and circulation models. Alternatively, it is also pos-
sible to try different values of α and ω, and then directly solve
Eq. (31) in a two-body simulation, which is however beyond
the scope of the presented study. The influence of differences
between Qxx and Qyy can be studied with N-body simulations by
prescribing their time evolution and varying their amplitudes. It
would be interesting to derive the parameters that can reproduce
the observations and to compare them with our simulations.

5. Conclusions

We have presented three MHD simulations of stellar convec-
tion with different rotation rates, and studied the gravitational
quadrupole moment and its connection to dynamo-generated

magnetic fields. The analysis is based on a spherical harmonic
decomposition of density and magnetic fields. Our results for
Run B (P = 1.2 days) show that a hemispheric dynamo mode
can be an important ingredient for the eclipsing time variations
in close binaries. This hemispheric dynamo produces equatori-
ally asymmetric density variations and changes the moment of
inertia along the rotation axis. The hemispheric activity migrates
seemingly periodically between hemispheres and modulates the
gravitational quadrupole moment. Furthermore, nonaxisymmet-
ric magnetic fields modulate the other two diagonal components
of the inertia tensor, adding a further modulation of Q. We also
expect to have a further modulation of Q that comes from the
centrifugal force which will be included in a future work as it
is the responsible for the angular momentum redistribution in
the Applegate mechanism (Applegate 1992). Linear correlation
analysis confirms the role of the magnetic field in changing the
quadrupole moment via density variations (Table 2) and the scat-
ter plot between magnetic energy and quadrupole moment shows
that large quadrupole moments are related to increased magnetic
energy (see Fig. 6).

When our results are interpreted in the context of the classi-
cal Applegate mechanism, that is the star is tidally locked, then
only the Qxx component of the quadrupole moment contributes
to the period variations. In this scenario, we obtain orbital period
modulations between one and two orders of magnitude smaller
than observed in the target system V471 Tau (Marchioni et al.
2018). We emphasize that our results here should be taken with
caution. We model the CZ of a Sun-like star while the CZ
extends inward for less massive stars which are more com-
mon among PCEBs. It is yet to be investigated if large enough
quadrupole moments are found in magnetohydrodynamical sim-
ulations of fully convective stars.

In the context of the models by Applegate (1989) and Lanza
(2020), the order of magnitude estimate of the amplitude of the
period modulation is 10−6−10−7. This range encompasses the
two observed contributions to the O−C diagram, as well as their
combined effect. The observed period variations could be a com-
bination of both, namely, both the axi- and nonaxisymmetric
quadrupole moments contribute to them. The implication of the
first interpretation is that there must be a hemispheric dynamo
with an alternating active hemisphere in order to modulate Qxx
as seen in our simulations. The second interpretation implies
that the star is not tidally locked and that there is a nonaxisym-
metric magnetic field in the CZ of the magnetically active star.
We emphasize, however, given the caveats of the model such
as imposed spherical symmetry, the coincidence in the order of
magnitude between the ETVs, and in our model must be taken
with caution. More importantly, relaxing the assumption of tidal
locking leads to period variations that are between one and two
orders of magnitude larger than in the tidal-locking scenario.

Observational studies suggest that both scenarios discussed,
namely asymmetric magnetic fields and nontidally locked stars,
are plausible. Firstly, a recent study by Klein et al. (2021) reported
the reconstruction of the surface magnetic field of Proxima Cen-
tauri using Zeeman-Doppler imaging (ZDI). They found that
the magnetic field is mainly poloidal with a dominant feature
that is tilted at 51◦ to the rotation axis (see their Fig. 3) with a
strength of 135 G, that is a field distribution that is asymmetric
with respect to the equator. This is a rather weak field so density
fluctuations should be smaller than what we find in our simula-
tions. However, Proxima Centauri is a slowly rotating M5.5 fully-
convective star. The magnetic field strength of fully-convective
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stars increases with rotation until a saturation regime is reached,
as measured by X-ray emission (see e.g., Wright & Drake 2016),
so density variations in magnetically active components of PCEBs
are expected to be larger due to the increased magnetic field
strength. This might also be the case for more evolved partially
convective stars as a similar scaling property was recently found
(Lehtinen et al. 2020). Studying the differences of stellar spots
during a minima and maxima of of O−C diagrams in PCEBs will
provide direct evidence of the connection between the underlying
dynamo and the orbital period variations. Secondly, the determi-
nation of tidal synchronization is equally important, as a deviation
from synchronization results in a more complex relation between
the gravitational quadrupole moment and eclipsing time varia-
tions and potentially larger binary period variations (see Lanza
2020, and also Sect. 4.3 of this paper). Lurie et al. (2017) stud-
ied tidal synchronization of F, G, and K stars in short-period
binaries. The authors find 21 eclipsing binaries that are not syn-
chronized and argue that this could be explained either because
they are young or have a complex dynamical history. Consider-
ing the dynamical evolution of PCEBs, where the secondary star
is engulfed by the companion and spirals inwards toward the core
of the more massive star (Paczynski 1976), it is conceivable that
they fall in this category.

The determination of the degree of synchronization in
post common envelope binaries would be beneficial to further
improve the understanding of the ETVs. The surface magnetic
field distribution would be as equally important because such
nonaxisymmetric fields produce larger quadrupole moments.
Furthermore, there is also unexplored grounds in the simula-
tions, such as the impact of the centrifugal force. Numerical
models, specially for fully convective stars such as those in
Käpylä (2021), that allow more freedom on the surface and near-
surface layers of stars are desired as changes in the oblateness of
the star can be captured.
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Appendix A: Scaling of the quadrupole moment
with Mach number

In Navarrete et al. (2020) the scaling of the quadrupole moment
was assumed to be

Qxx,phys ∝ L
−2/3
r Qxx,code, (A.1)

where Qxx,phys is the physical quadrupole moment, and Lr
3 is

the ratio of simulation to solar luminosities at the bottom of the
CZ, and Qxx,code is the quadrupole moment in code units. Equiv-
alently,

Qxx,phys ∝ Ma2Qxx,code, (A.2)

where Ma is the Mach number. We test this scaling with two
sets of simulations. Set L uses the same parameters as in Run B
but we omit magnetic fields and rotation. Set M includes both
rotation and magnetic fields. In particular, Run L2 has the same
input parameters as Run B such as Lr, but without rotation
and magnetic fields. Relevant quantities are shown in Table 1.
Run L2 produces a maximum variation of the quadrupole
moment ∆Qxx = 6.8 × 1038 kg m2, which is about 18 times
smaller than in Run B. These variations develop on a timescale
of 5 years and remain below the aforementioned level after that.

The rms value of the quadrupole moment fluctuations as a
function of Mach number is shown in Fig. A.1 for Set L and in
Fig. A.2 for Set M. The results are in reasonable agreement with
the theoretical scaling, which is indicated by the dotted line in
each plot.

Table A.1. Parameters of sets L and M.

Run Fr Ma ∆Qrms
xx

L1 2.74 × 105 5.67 × 10−2 1.07 × 10−5

L2 8.07 × 105 7.97 × 10−2 2.85 × 10−5

L3 2.34 × 106 1.11 × 10−1 6.87 × 10−5

M1 2.12 × 105 9.60 × 10−2 3.44 × 10−5

M2 6.37 × 105 1.25 × 10−1 5.60 × 10−5

M3 2.12 × 106 1.42 × 10−1 9.30 × 10−5

3 Lr corresponds to Fr of Navarrete et al. (2020).

Fig. A.1. Root-mean-squared quadrupole moment fluctuations as a
function of Mach number for Set L (without rotation and magnetic
fields). The dotted line is proportional to the Mach number squared and
the dash-dotted line joins the data points.

Fig. A.2. Root-mean-squared quadrupole moment fluctuations as a
function of Mach number for Set M (with rotation and magnetic fields).
The dotted line is proportional to the Mach number squared and the
dash-dotted line joins the data points.
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Appendix B: Figures of the decomposed fields

Fig. B.1. First nonaxisymmetric mode of the radial magnetic field (Bm=1
r ) at r = 0.98R for each run.

Fig. B.2. Second nonaxisymmetric mode of the radial magnetic field (Bm=2
r ) at r = 0.98R for each run.
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Fig. B.3. First nonaxisymmetric mode of density at r = 0.98R for each Run.

Fig. B.4. Second nonaxisymmetric mode of density at r = 0.98R for each Run.
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