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Abstract Mean-field dynamo theory, describing the evolution of large-scale
magnetic fields, has been the mainstay of theoretical interpretation of mag-
netism in astrophysical objects such as the Sun for several decades. More
recently, three-dimensional magnetohydrodynamic simulations have reached a
level of fidelity where they capture dynamo action self-consistently on local
and global scales without resorting to parametrization of unresolved scales.
Recent global simulations also capture many of the observed characteristics of
solar and stellar large-scale magnetic fields and cycles. Successful explanation
of the results of such simulations with corresponding mean-field models is a
crucial validation step for mean-field dynamo theory. Here the connections be-
tween mean-field theory and current dynamo simulations are reviewed. These
connections range from the numerical computation of turbulent transport co-
efficients to mean-field models of simulations, and their relevance to the solar
dynamo. Finally, the most notable successes and current challenges in mean-
field theoretical interpretations of simulations are summarized.
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Contents

1 Introduction and scope of the review . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Brief overview of relevant solar observations . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Large-scale magnetism of the Sun . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Sunspots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Differential rotation and meridional circulation in the Sun . . . . . . . . . . . 7

3 Self-consistent three-dimensional dynamo simulations . . . . . . . . . . . . . . . . . 8
3.1 Equations of magnetohydrodynamics (MHD) . . . . . . . . . . . . . . . . . . 9

3.1.1 Microphysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1.2 Dimensionless parameters . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Classification of dynamo simulations . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1 Dynamos in simulations with forced flows (Class 1) . . . . . . . . . . . 15
3.2.2 Local simulations of dynamos due to convection (Class 2) . . . . . . . 16
3.2.3 Representative global solar and stellar dynamo simulations (Class 3) . 17

4 Mean-field dynamo theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Analytic methods to compute turbulent transport coefficients . . . . . . . . . 22

4.1.1 First order smoothing approximation (FOSA) . . . . . . . . . . . . . . 23
4.1.2 Minimal tau approximation (MTA) . . . . . . . . . . . . . . . . . . . . 23
4.1.3 Lagrangian methods for vanishing diffusivity . . . . . . . . . . . . . . 24

4.2 Nonlinearity due to direct magnetic back-reaction . . . . . . . . . . . . . . . . 25
4.3 Magnetic helicity conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Prerequisites for accurate mean-field modeling . . . . . . . . . . . . . . . . . . . . . 28
6 Methods to compute turbulent transport coefficients from simulations . . . . . . . 29

6.1 Imposed field method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Multidimensional regression methods . . . . . . . . . . . . . . . . . . . . . . . 31

6.2.1 Moments method of Brandenburg and Sokoloff (2002) . . . . . . . . . 31
6.2.2 Singular value decomposition (SVD) . . . . . . . . . . . . . . . . . . . 33

6.3 Test field methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3.1 Quasi-kinematic test field method . . . . . . . . . . . . . . . . . . . . 35
6.3.2 Nonlinear test field methods . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Comparisons of 3D dynamo simulations with mean-field theory and models . . . . 43
7.1 Forced turbulence simulations with and without shear (Class 1) . . . . . . . . 43

7.1.1 Helically forced turbulence without shear (α2 dynamo) . . . . . . . . . 43
7.1.2 Helically forced turbulence with shear (αΩ dynamo) . . . . . . . . . . 45
7.1.3 Nonhelically forced turbulence with shear . . . . . . . . . . . . . . . . 46

7.2 Convective dynamos in local boxes (Class 2) . . . . . . . . . . . . . . . . . . . 47
7.3 Global simulations of convection in spherical shells (Class 3) . . . . . . . . . . 50

7.3.1 Interpretation in terms of αΩ dynamos . . . . . . . . . . . . . . . . . 50
7.3.2 Magnetic driving of dynamos? . . . . . . . . . . . . . . . . . . . . . . 52
7.3.3 Relative strength of dynamo effects as function of rotation . . . . . . . 53
7.3.4 Mean-field modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.4 Magnetic helicity conservation and saturation of large-scale dynamos . . . . . 57
7.5 Active region formation via negative effective magnetic pressure . . . . . . . . 58

8 Outstanding issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8.1 Self-consistent inclusion of large-scale flows . . . . . . . . . . . . . . . . . . . 61
8.2 Nonlinearity and non-locality . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

9 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Connecting mean-field theory with dynamo simulations 3

1 Introduction and scope of the review

Development of dynamo theory has its motivation in solar observations start-
ing from Schwabe’s realization of cyclicity of sunspots (Schwabe 1844) and
Hale’s discovery of magnetic fields (Hale 1908) and polarity reversals (Hale
et al. 1919) of sunspots. Now we know that the solar magnetic field shows rel-
atively coherent quasi-cyclic behavior with a 22-year period with superimposed
longer term variations and extended minima such as the Maunder minimum
(e.g. Hathaway 2015). Direct observations of the sunspot cycle extend over
more than four centuries (e.g. Arlt and Vaquero 2020) whereas the activity of
the Sun can be followed over a much longer period using cosmogenic isotopes
gathered from ice cores and tree rings (e.g. Solanki et al. 2004; Usoskin 2017).
The apparent regularity of the solar cycle is remarkable considering the under-
lying highly turbulent and chaotic dynamics of the solar plasma (e.g. Miesch
and Toomre 2009; Schumacher and Sreenivasan 2020).

The efforts to explain solar magnetism go back to the seminal work of Lar-
mor (1919) who proposed that rotation of sunspots maintains the observed
magnetic fields. This road led to an impasse with Cowling’s anti-dynamo
theorem (Cowling 1933), stating that a purely axisymmetric magnetic field
cannot be maintained by dynamo action. The first successful solar dynamo
model was presented by Parker (1955a) who considered the combined action
of helical convection cells and differential rotation, ideas which are still central
concepts in current efforts to explain solar and stellar dynamos (e.g. Charbon-
neau 2020; Brandenburg et al. 2023, and references therein). These same ideas
were incorporated in the mathematically rigorous mean-field dynamo theory
that was developed independently in the former German Democratic Repub-
lic under the leadership of Max Steenbeck (e.g. Steenbeck et al. 1966; Krause
and Steenbeck 1967; Krause and Rädler 1980). This theory is based on the
idea that turbulent motions do not only diffuse but also generate large-scale
magnetic fields, with differential rotation and meridional flows contributing to
the process. The advent of mean-field dynamo theory led to a proliferation
of dynamo models of the Sun, planets, and of stars other than the Sun (e.g.
Steenbeck and Krause 1969a,b; Stix 1971; Moss and Brandenburg 1995; Pipin
2017).

The main difficulty with mean-field dynamo models is that the turbulent
electromotive force E = u× b, where the overbars denote suitably chosen
averages, and where u and b are the turbulent (small-scale) velocities and
magnetic fields, needs to be known. This information is not available obser-
vationally from the interiors astrophysical objects such as the Sun. Analytic
studies face the turbulence closure problem (e.g. Speziale 1991) and have to
resort to approximations that typically cannot be rigorously justified in as-
trophysically relevant parameter regimes (e.g. Rädler and Rheinhardt 2007).
Mean-field models are therefore susceptible to ad hoc modifications and sim-
plifications, and very different physical ingredients can be used to construct
models that reproduce, for example, the salient features of the solar cycle (e.g.
Charbonneau 2020, and references therein).
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Numerical simulations solving the equations of magnetohydrodynamics
(MHD) self-consistently in spherical shells have been around since the 1980s
with pioneering works of Gilman and Miller (1981), Gilman (1983), and Glatz-
maier (1985). While these simulations produced differential rotation reminis-
cent of the Sun with a fast equator and slower poles, the magnetic field solu-
tions were distinctly non-solar such that either no cycles were detected (Gilman
and Miller 1981) or the dynamo waves propagated toward the poles instead of
the equator as in the Sun (Gilman 1983). The steady increase of computing
power has enabled more comprehensive parameter studies and changed the
picture to the extent that ab initio simulations produce solutions that are in
many respects similar to the Sun within a limited range of parameters. For ex-
ample, solar-like large-scale differential rotation (e.g. Brun et al. 2004; Käpylä
et al. 2014; Hotta et al. 2015) and cyclic equatorward propagating magnetic
fields (e.g. Ghizaru et al. 2010; Käpylä et al. 2012b; Augustson et al. 2015;
Strugarek et al. 2017; Brun et al. 2022) emerge routinely in such models. Nev-
ertheless, the mechanism producing the solar-like dynamo solutions in many
of these simulations is unlikely to be the same as in the Sun (Warnecke et al.
2014, see also Section 7.3).

Furthermore, the parameter regimes of even the most recent state-of-the-
art simulations are still far removed from the Sun (e.g. Ossendrijver 2003;
Käpylä et al. 2023) and it is questionable whether these simulations have
reached an asymptotic regime where diffusion at small scales no longer af-
fects the results at large scales (e.g. Käpylä et al. 2017a; Hotta et al. 2022;
Guerrero et al. 2022). Even though the computing power a modern astrophysi-
cist has access to is rapidly increasing, the immense disparity of spatial and
temporal scales in the convection zones of the Sun and stars means that di-
rect simulations of solar and stellar dynamos are still far beyond the reach of
any current or foreseeable supercomputers (e.g. Kupka and Muthsam 2017;
Käpylä et al. 2023). Finally, even in the case that fully realistic simulations
of the Sun were available, it is more than likely that we would not be able to
understand them without resorting to simpler theoretical models that capture
the essential physics. Thus there is still a great demand for mean-field models
that faithfully capture the relevant dynamics of complex 3D systems.

From the point of view of mean-field dynamo theory, 3D simulations of-
fer a great advantage over observations of astrophysical objects in that the
full information about the flows, magnetic fields, and the electromotive force
is readily at hand. Thus it is much easier to construct mean-field models of
simulations than of the Sun where the detailed information of flows and mag-
netic fields is missing and therefore subject to speculation. Furthermore, such
comparisons can be viewed as an essential validation step of the mean-field
dynamo theory itself. That is, if mean-field models can accurately capture the
physics of 3D simulations, there is hope to do the same with more complex
systems such as the Sun. However, starting such detailed comparisons with
mean-field theory from simulations of solar and stellar dynamos is likely to be
complicated and the results are not necessarily easy to interpret. Thus it is
often more fruitful for physical understanding to study systems that are con-
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siderably simpler and which isolate one or a few of the physical effects that are
present in the highly non-linear, strongly stratified, and rotating convection
zone of the Sun. Such simpler setups will also be the starting point of the
comparisons between simulations and mean-field theory in this review, with
systems of increasing complexity following from there.

The outline of the review is as follows: since the mean-field models and sim-
ulations often seek to capture some physical system such as the Sun, a brief
overview of the relevant observations is therefore warranted. This is presented
in Sect. 2 with emphasis on the salient solar observations. Section 3 summa-
rizes different types of 3D dynamo simulations, what they try to accomplish,
their usefulness with respect to comparisons to mean-field theory, and their
relation to the Sun and stars. A brief outline of mean-field dynamo theory
is presented in Sect. 4. The necessary prerequisites for comparing simulations
with corresponding mean-field theory are discussed in Sect. 5. Methods for ex-
tracting turbulent transport coefficients from simulations and results obtained
with such methods are discussed in Sect. 6. Finally, comparisons of various
kinds between simulations and mean-field models are discussed in Sect. 7. Fi-
nally, outstanding issues are discussed in Sect. 8, and Sect. 9 sums up the
current state of affairs.

2 Brief overview of relevant solar observations

The ultimate aim of 3D dynamo simulations and mean-field models is to ad-
dress parts or the totality of the dynamo in some real system. Therefore it
is in order to briefly summarize the pertinent observations that the models
seek to capture. Here the discussion is limited to solar global magnetism and
large-scale flows that are an essential ingredient in the dynamo process.

2.1 Large-scale magnetism of the Sun

The observational knowledge of the Sun both in terms of quality and quan-
tity far exceeds that of any other star. Therefore it is logical that efforts at
dynamo modeling have to a large extent targeted the Sun (cf. Charbonneau
and Sokoloff 2023). More than four centuries of systematic observations has
revealed the approximately 11-year sunspot cycle and a century of magnetic
field observations the 22-year magnetic cycle. Furthermore, sunspots appear
on a latitude strip ±40◦, appearing progressively closer to the equator as the
cycle advances. The surface magnetic fields consists largely of bipolar regions
with opposite polarities at different hemispheres. A poleward branch, believed
to be caused by turbulent diffusion and advection by the meridional flow (see
Jiang et al. 2014, and references therein), is also present at high latitudes; see
Fig. 1. The polar field changes sign at sunspot maximum and the radial and
longitudinal fields are thought to be in anticorrelation (Stix 1976). The spa-
tiotemporal behavior of the large-scale magnetic fields of the Sun captured in



6 Petri J. Käpylä

Fig. 1 Time-latitude or butterfly diagram of the longitudinally averaged radial magnetic
field at the solar surface. The color scale is clipped at ±10 G to highlight the weak fields on
high latitudes. Courtesy of David Hathaway (http://solarcyclescience.com).

Fig. 2 Left: Sunspot from the GREGOR solar telescope, courtesy of Rolf Schlichenmaier
and Nazaret Bello González, Institute for Solar Physics (KIS). Right: magnetogram of the
solar surface on 18th September 2024 from the Solar Dynamics Observatory.

this figure is the primary observable that 3D simulations and mean-field mod-
els seek to reproduce. The reader is referred to other reviews in this series for
the details of the solar cycle and its long-term variations; see, e.g., Hathaway
(2015), Usoskin (2017), and Karak (2023).

2.2 Sunspots

The visible manifestation of large-scale magnetism in the Sun are sunspots
which are concentrations of kilogauss strength magnetic fields at the surface
of the Sun (e.g. Solanki 2003; Berdyugina 2005); see also the left panel of
Fig. 2. Although the visible spots on the solar surface are highly concentrated,
corresponding magnetograms indicate that the spots are associated with larger

http://solarcyclescience.com
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scale magnetism beneath; see the right panel of Fig. 2. Detecting magnetic
fields in subsurface layers of the Sun is very challenging and typically relies
on indirect methods. One such method is to follow the rise of active regions
in the Sun and in corresponding numerical simulations of surface convection
where magnetic flux tubes are advected through the bottom boundary (e.g.
Birch et al. 2016). This study suggest that the rise speeds of active regions are
too low for them to originate in the tachocline at the base of the convection
zone. A possible explanation is that active regions form close to the surface
(e.g. Brandenburg 2005a).

This idea arises from the observation that the rotation rate of sunspots de-
pends systematically on their age: the youngest spots have a rotation rate that
matches that of the base of the near-surface shear layer (NSSL; see Sect. 2.3) at
r = 0.95R⊙, whereas the oldest ones are more in line with the surface rotation
rate (e.g. Pulkkinen and Tuominen 1998). This can be interpreted as spots be-
ing anchored at different depths, and that even the youngest spots would be a
shallow phenomenon. Another hint toward this direction is the strengthening
of the surface f mode of the Sun prior to active region emergence (e.g. Singh
et al. 2016; Waidele et al. 2023), which can be seen up to 48 hours before any
magnetic fields are detected at the surface. The effect of subsurface magnetic
fields on the f mode has been studied using idealised numerical simulations
(Singh et al. 2014, 2015, 2020), where strengthening was found for spatially
concentrated fields near the surface. Nevertheless, the formation mechanism
of sunspots is currently unknown but a successful solar and stellar dynamo
theory has to incorporate this.

2.3 Differential rotation and meridional circulation in the Sun

Another remarkably well-known characteristic of the Sun is its interior differ-
ential rotation (e.g. Schou et al. 1998; Howe 2009); see the left panel of Fig. 3.
The interior rotation in the bulk of the convection zone is roughly constant
on radial lines whereas the boundary layers near the surface (i.e., the NSSL)
and at the base of the convection zone (tachocline) are characterized by strong
radial shear. The radiative interior of the Sun is nearly rigidly rotating. Solar
differential rotation is thought to be driven by the interaction of convective
turbulence and rotation (e.g. Rüdiger 1989; Kitchatinov and Rüdiger 1995),
although recent simulations suggest that magnetic fields can also be important
(e.g. Hotta and Kusano 2021; Hotta et al. 2022; Käpylä 2023; Hotta 2025). In
the NSSL the gradients of velocity and density are large and the convective
timescale is much shorter than the solar rotation period. Therefore the NSSL is
challenging to reproduce in global 3D simulations and can be incorporated self-
consistently only at high resolutions (Hotta et al. 2015; Matilsky et al. 2019;
Hotta 2025). The transition to rigid rotation in the radiative core is thought to
be mediated by magnetic fields, either of fossil (e.g. Rudiger and Kitchatinov
1997; Gough and McIntyre 1998) or dynamo origin (e.g. Forgács-Dajka and
Petrovay 2001; Matilsky et al. 2022).
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Fig. 3 Left: mean angular velocity in the solar interior from global helioseismology using
data from Larson and Schou (2018). The dashed line at r/R⊙ = 0.71 indicates the base of
the convection zone. Right: latitudinal component of the solar meridional circulation from
helioseismology from Gizon et al. (2020).

A significantly less well constrained part of solar interior large-scale flows
is the meridional circulation (e.g. Hanasoge 2022). Whereas the poleward flow
near the surface is well-established, the deep subsurface structure and speed of
the meridional flow is still under debate: helioseismic inversions have yielded
both single (e.g. Gizon et al. 2020) and multiple cell (e.g. Schad et al. 2013;
Zhao et al. 2013) structures in radius depending on the methods used. The
results from solar cycle 24 from Gizon et al. (2020) is shown in the right panel
of Fig. 3. Numerical 3D simulations consistently produce multiple meridional
circulation cells per hemisphere in cases with solar-like differential rotation
profile (e.g. Käpylä et al. 2014; Passos et al. 2015; Brun et al. 2017). In dynamo
theory these large-scale flows contribute to the generation of global magnetism:
differential rotation winds up poloidal fields to produce the toroidal field (Ω
effect) and meridional flows are crucially important in a class of mean-field
models known as flux-transport or advection dominated dynamos (e.g. Dikpati
and Charbonneau 1999; Chatterjee et al. 2004).

3 Self-consistent three-dimensional dynamo simulations

Before delving into the details of the various kinds of dynamo simulations at
large, it is necessary to clarify what is meant by a self-consistent dynamo simu-
lation. In what follows this is taken to encompass the simultaneous solution of
(at least) the induction and Navies–Stokes equations in three dimensions with-
out further approximations, and where dynamo action is due to the resolved
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dynamics. These models can be considered as “direct numerical simulations”
(DNS) of systems where most dimensionless parameters, such as Reynolds
and Prandtl numbers, are unrealistically small in comparison to the Sun and
stars (see, e.g. Kupka and Muthsam 2017; Käpylä et al. 2023). Alternatively
we may consider them as “large-eddy simulations” (LES) that seek to cap-
ture the large-scale phenomena (possibly of a real system) down to the grid
scale directly, while modeling the subgrid-scale dynamics typically by highly
enhanced diffusion coefficients. This is in contrast to mean-field models where
typically all but the largest scales are parameterized.

3.1 Equations of magnetohydrodynamics (MHD)

A non-relativistic charge neutral gas that is sufficiently collisional that it can
be described as a single fluid can be described by the standard set of MHD
equations (see, e.g. Davidson 2001). For the fully compressible case in a rotat-
ing frame these are given by:

∂B

∂t
= ∇× (U ×B − ηµ0J) , (1)

∂ρ

∂t
= −∇ · (ρU), (2)

ρ
∂U

∂t
= −ρU · ∇U + ρg −∇p− 2ρΩ ×U + J ×B +∇ · (2ρνS) + f ,(3)

ρT
∂s

∂t
= −ρTU · ∇s+∇ · F + ηµ0J

2 + 2νρS2 +H, (4)

where B is the magnetic field, U is the velocity, η is the magnetic diffusivity,
µ0 is the permeability of vacuum, J = ∇×B/µ0 is the current density, ρ is the
density, ν is the kinematic viscosity, S is the traceless rate-of-strain tensor, g =
−∇ϕg is the acceleration due to gravity, where ϕg is the gravitational potential,
p is the pressure, Ω is the rotation vector, f describes additional body forces,
T is the temperature, s is the specific entropy, F = F rad + FSGS is a flux
which often contains radiative (F rad = −K∇T ) and subgrid-scale (SGS) (e.g.,
FSGS = −χtρ∇s)1 contributions, where K is the heat conductivity and χt

describes SGS entropy diffusion (Braginsky and Roberts 1995; Rogachevskii
and Kleeorin 2015; Käpylä 2023). Finally, H describes additional heating and
cooling from, e.g., from nuclear reactions. To close the system, an equation of
state p = p(ρ, T ) relating pressure to the other thermodynamic quantities is
needed. The mean molecular weight µ = µ(ρ, T ) enters the equation of state
and depends on the ionization state of the matter. Very often the equation of
state is for simplicity taken to be that of a monoatomic ideal gas, p = RρT ,

1 Sometimes the SGS flux is defined with an additional T factor via FSGS = −χtρT∇s
(e.g. Brun et al. 2004; Jones and Kuzanyan 2009; Käpylä et al. 2013b; Orvedahl et al. 2018).
Rogachevskii and Kleeorin (2015) point out that this is formally correct if the internal energy
equation is solved instead of the entropy equation.
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where R = cP − cV is the universal gas constant, and cP and cV are the heat
capacities at constant pressure and volume with γ = cP/cV = 5/3.

However, in many dynamo simulations a reduced set of equations is con-
sidered. For example, the flow can be assumed incompressible or anelastic in
which cases Eq. (2) is replaced by ∇·U = 0 or by ∇· (ρU) = 0, respectively.
In fully compressible simulations of convection the timestep constraint due to
the low Mach number in the deep convection zone is sometimes alleviated by
reducing the sound speed artificially by multiplying the rhs of Eq. (2) by a
factor ξ−2 < 1 (e.g. Rempel 2005; Hotta et al. 2012). Often idealized simula-
tions are done assuming an isothermal equation of state p = ρc2s , in which case
the energy equation drops out. These models also often neglect density strat-
ification and rotation, and flows and helicity are injected through an external
force f at a pre-defined forcing scale kf .

3.1.1 Microphysics

In addition to the equation of state, microphysics enter at least in princi-
ple also through the diffusion coefficients ν and η, and via the gas opacity
κ that goes into the description of radiation. The dependence of the fluid
viscosity and magnetic diffusivity on the ambient thermodynamic state can
be computed using Spitzer formulas (Spitzer 1962) with ν ∝ ρ−1T 5/2 and
η ∝ T−3/2. These have been used to compute the microscopic diffusion co-
efficients for various astrophysical objects; see Brandenburg and Subrama-
nian (2005a), Schumacher and Sreenivasan (2020), and Jermyn et al. (2022).
However, the Spitzer formulae are almost never used in numerical dynamo
simulations because in practically all cases of astrophysical interest the re-
sulting diffusion coefficients either vary too much within the computational
domain and/or are too small to be used in computationally affordable sim-
ulations; see discussions about convection and global dynamo simulations in,
e.g., Kupka and Muthsam (2017) and Käpylä et al. (2023). Furthermore, the
thermal Prandtl number Pr = ν/χ, where χ = K/cPρ, and the corresponding
magnetic Prandtl number PrM = ν/η are in reality very small in stars such
as the Sun (e.g. Schumacher and Sreenivasan 2020). Therefore 3D dynamo
simulations most often use either constant or spatially varying prescribed dif-
fusivities that are much larger than the corresponding Spitzer equivalents or
seek to minimize the effective diffusion by the use of implicit or explicit SGS
modeling (see, e.g. Miesch et al. 2015). Values of the thermal and magnetic
Prandtl numbers of the order of unity are used out of numerical necessity.

A similar situation occurs with the opacity of the gas. Most often the gas
is assumed optically thick is which case F rad can be written in terms of the
diffusion approximation

F rad = −K∇T, (5)

where K is the heat conductivity given by

K =
16σSBT

3

3κρ
, (6)
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where σSB is the Stefan–Boltzmann constant. The opacity of the gas depends
in a complex way on thermodynamics and chemical composition. In stellar sur-
face convection simulations the opacity is often taken from tabulated values
(e.g. Rempel et al. 2009b), but this approach is typically not used in most 3D
large-scale dynamo simulations. Instead, global simulations often adopt profiles
of K from 1D solar/stellar models (e.g. Brun et al. 2004, 2022) or coarser ap-
proximations such as the Kramers law (e.g. Käpylä et al. 2019, 2020b; Viviani
and Käpylä 2021), or simply assume either constant or fixed spatial profiles
for K (e.g. Käpylä et al. 2012b; Mabuchi et al. 2015; Simitev et al. 2015). The
effects of these different choices for the dynamo solutions can only be indirect,
e.g., that the vigour and form of the flows and the thermodynamic structure
of the dynamo region are altered. A prominent example is the weakly stably
stratified deep parts of convection zones that have been detected in simula-
tions where the heat conductivity K connects smoothly from the convective
to radiative zones (e.g. Roxburgh and Simmons 1993; Tremblay et al. 2015;
Hotta 2017; Käpylä et al. 2017b).

Finally, the additional heating and cooling terms are often used in models
to either mimic radiative cooling near the surface or heating due to nuclear
reactions in the core (e.g. Dobler et al. 2006; Käpylä 2021; Hidalgo et al.
2024). Sometimes the effects of radiation are also parameterized in terms of a
heating/cooling term that makes no recourse to heat conductivity or opacities
and is therefore included in H (e.g. Ghizaru et al. 2010; Guerrero et al. 2016;
Matilsky and Toomre 2020; Hotta et al. 2022).

3.1.2 Dimensionless parameters

The solutions of MHD equations are characterized by dimensionless param-
eters that define the system that arise upon non-dimensionalization. These
include thermal and magnetic Prandtl numbers, the Taylor number, and in
the case of convection the Rayleigh number:

Pr =
ν

χ
, PrM =

ν

η
, Ta =

4Ω0d
4

ν2
, Ra =

gd4

νχ

(
− 1

cP

ds

dr

)
, (7)

d is a system-scale length scale, e.g., the depth of the convection zone. The
Taylor number is related to the Ekman number Ek = ν/Ω0d

2 via Ta = 4Ek−2.
In stars such as the Sun, where the luminosity L is practically constant on
timescales relevant for the dynamo, it is convenient to use a flux-based Rayleigh
number

RaF =
gd4Ftot

cPρTνχ2
, (8)

where Ftot = L/4πr2 is the total flux. The Prandtl, Taylor, and flux-based
Rayleigh number can be combined to a diffusion-free modified Rayleigh num-
ber (e.g. Christensen 2002; Christensen and Aubert 2006)

Ra⋆F =
gFtot

8cPρTΩ3d2
. (9)
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This is the only system parameter that 3D simulations of the solar dynamo
can reproduce. Choosing the length scale as d = cPT/g ≡ H, Ra⋆F = Co−3

F ,
where CoF = 2ΩH(Ftot/ρ)

−1/3 is a flux-based Coriolis number (Käpylä 2023,
2024).

Further dimensionless numbers describing the system are diagnostics that
are available a posteriori. These include the fluid and magnetic Reynolds num-
bers and the Péclet number

Re =
uℓ

ν
, ReM =

uℓ

η
, Pe =

uℓ

χ
, (10)

where u and ℓ are typical velocity amplitude and length scale. The importance
of rotation is given by the Coriolis number

Co =
2Ω0ℓ

u
= 2Ro−1, (11)

where Ro is the Rossby number. In a density-stratified system such as the solar
interior all of the numbers listed above are functions of radius and can vary
several order of magnitude between the base and the surface of the convection
zone. In simulations this needs to be avoided for numerical reasons (Käpylä
et al. 2023).

3.1.3 Boundary conditions

An important but often overlooked aspect of numerical modeling are the
boundary conditions that invariably need to be imposed. Most commonly dy-
namo models, be it mean-field or 3D, adopt simplified expressions such as
setting the magnetic field parallel or normal to the boundary. The former cor-
responds to a perfect conductor and the magnetic field is confined into the
simulation domain, while the latter allows field lines to cross the boundary.
Another condition similar to the normal field condition is to assume a po-
tential field outside of the domain. The choice of boundary conditions seems
innocuous but can in fact have far-reaching consequences. First, the allowed
modes and symmetries of magnetic fields depend on the boundary conditions
and can lead to qualitatively different results (e.g. Cole et al. 2016; Branden-
burg 2017, 2018b). Furthermore, magnetic boundary conditions have a crucial
importance for magnetic helicity conservation: if magnetic field lines cannot
cross the boundary of the domain, magnetic helicity cannot escape which can
lead to resistively slow growth of magnetic field and saturation of the dynamo;
see Sect. 4.3.

Numerical simulations of the Sun and stars would in principle also need to
include the surface where the density is decreasing very rapidly and the gas
becomes optically thin. Global dynamo simulations either do not include the
full stratification of the Sun or only model the star until a manageable outer
radius which is smaller than the actual stellar radius. Yet another approach
is to embed the star into a cube where no explicit boundary condition is
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imposed at the surface (e.g. Dobler et al. 2006; Masada et al. 2022; Ortiz-
Rodŕıguez et al. 2023). However, in such cases the surface of the star is typically
determined by spatially fixed profiles of cooling and the transition between the
stellar interior and exterior is much smoother than in reality. However, there
is some evidence to the effect that including layers outside the star lead to
qualitatively different outcomes (e.g. Warnecke et al. 2016; Käpylä 2022).

3.2 Classification of dynamo simulations

The design of dynamo simulations depends to a great extent on the goal:
to study a particular dynamo effect in isolation calls for models where only
the necessary ingredients are retained in a simple geometry, while study of
global dynamos, such as the solar dynamo, requires spherical geometry and
the interplay of convection, rotation, stratification, and non-linearity due to
magnetism. A great variety of models fits in the spectrum between these ex-
tremes. As a general rule the amount of control of the simulation decreases
with increasing complexity and physical ingredients. At the same time, the
complexity of the corresponding mean-field models increases due to the larger
number and higher dimensionality of turbulent transport coefficients and mean
fields. Dynamo simulations can be categorized in roughly three classes:

1. Class 1: Forced turbulence simulations where the geometry of the system
is simplified and where flows are driven by external forcing instead of a
natural instability. This class corresponds to, for example, fully periodic
Cartesian forced turbulence simulations of helical (e.g. Meneguzzi et al.
1981; Brandenburg 2001; Candelaresi and Brandenburg 2013; Subramanian
and Brandenburg 2014) and non-helical (e.g. Iskakov et al. 2007; Warnecke
et al. 2023) dynamos where imposed uniform large-scale shear can be fur-
ther included (e.g. Yousef et al. 2008b; Käpylä and Brandenburg 2009; Teed
and Proctor 2016). However, also systems where physical parameters such
as the imposed kinetic helicity or large-scale flows have systematic spatial
variations (e.g. Mitra et al. 2010a; Tobias and Cattaneo 2013; Rincon 2021)
or more realistic geometry (e.g. Mitra et al. 2009b, 2010b; Jabbari et al.
2015) belong to this class. Furthermore, simulations where kinetic helicity
is not necessarily due to forcing but due to the combined effects of density
stratification and rotation (e.g. Brandenburg et al. 2012b, 2013a) belong to
Class 1. Such simulations are typically used to study isolated aspects of the
dynamo problem such as predictions of mean-field theory or the non-linear
saturation of dynamos. The simplified geometry and idealized physics mean
that mean-field theoretic interpretation of Class 1 simulations is the most
straightforward of all models although still not necessarily easy.

2. Class 2: Local instability-driven simulations where the geometry is still
simple, for example, a Cartesian portion of a star, accretion disk, or a
Galaxy, where flows are driven by physical instabilities such as convection
(e.g. Käpylä et al. 2008; Hughes and Proctor 2009; Masada and Sano 2014),
magnetorotational instability (e.g. Brandenburg et al. 1995; Gressel 2010),
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Table 1 Classification of dynamo simulations. The abbreviations denote: for = forcing, sc
= self-consistent, loc = local, typically Cartesian, and glo = global, typically spherical.

Class Forcing Helicity Shear Geometry
1 External for/sc for loc/glo
2 Instability sc for/sc loc/glo
3 Instability sc sc glo

or supernovae (e.g. Gressel et al. 2008; Gent et al. 2013; Bendre et al. 2015).
In comparison to simulations in Class 1, Class 2 models are more physically
consistent in that flows and their statistical properties such as turbulence
and kinetic helicity are not put in by hand via forcing but emerge self-
consistently as solutions of the MHD equations. A major advantage in this
type of models is that the mean-field theoretic interpretation of the results
remains tractable, especially if planar averages are a good representation
of the mean fields (e.g. Käpylä et al. 2009a,b; Masada and Sano 2014).
In simulations of Class 1 and 2 the large-scale flows are typically either
absent or externally imposed and therefore a mean-field treatment of the
Navier-Stokes equations does not need to be considered.

3. Class 3: Semi-global and global simulations are similar to the local instability-
driven models in terms of physics with the distinction that a realistic geom-
etry is assumed. Thus comparisons with actual astrophysical objects such
as the Sun and stars are at least in principle possible. In Class 3 simulations
the large-scale flows are outcomes of the models and in the general case
they also would need to be subject to mean-field treatment (e.g. Rüdiger
1989). This increases the complexity of the mean-field description consid-
erably and typically this task is omitted in comparisons of 3D simulations
with mean-fields models which is also the path taken in the current review.
Most relevant examples for the current topic of Class 3 models are simula-
tions of solar and stellar dynamos (e.g. Ghizaru et al. 2010; Käpylä et al.
2012b; Augustson et al. 2015; Mabuchi et al. 2015; Warnecke et al. 2021;
Brun et al. 2022; Warnecke et al. 2025). In these cases the mean fields can
be considered as averages over the longitude, leading to 2D mean-field de-
scription with a corresponding (r, θ)-dependence of the turbulent transport
coefficients.

The boundaries between the different categories are somewhat fluid but the big
picture is accurate enough. The different classes are summarized in Table 1.
Classes 1 and 2 are useful when studying individual dynamo effects and have
the most straightforward theoretical interpretation. Simulations of Class 3
are, at least in theory, the most realistic but also the most challenging to deal
with mean-field theory. The discussion in the current review concentrates on
simulations that are successful large-scale dynamos, that is, they produce an
identifiable large-scale magnetic field which is interpreted to be due to dynamo
action. While simulations leading to small-scale dynamos are mentioned where
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relevant, especially when co-existing with a large-scale dynamo, the reader is
referred to, for example, Rempel et al. (2023) for an in depth review of this
topic. The following sections summarize examples of each class of simulations
relevant to solar and stellar dynamos.

3.2.1 Dynamos in simulations with forced flows (Class 1)

The history of 3D dynamo simulations can be considered to start from the
seminal study of Meneguzzi et al. (1981) who used forced turbulence in a
fully periodic cube to study dynamos in helical and non-helical cases, and who
were the first to show large-scale magnetic field growth by helical turbulence
by means of a 3D numerical simulation. This can be considered as the first
demonstration of an α2 dynamo in the mean-field sense using direct solutions
of the MHD equations. However, computational constraints were still holding
back the simulators: Meneguzzi et al. (1981) had to use hyperdiffusivity to
resolve the helical case and to run the simulations in the National Center for
Atmospheric Research (NCAR) Cray-1 – the most powerful supercomputer in
the world at the time. A proliferation of modeling efforts of this kind started
in earnest only much later when the required computational power became
more accessible (cf. Balsara and Pouquet 1999; Brandenburg 2001). A land-
mark in this respect is the study of Brandenburg (2001) where the importance
of magnetic helicity conservation in the non-linear phase of large-scale dynamo
action was demonstrated. Many aspects of the helically forced, or α2 dynamo,
have hence been studied by means of 3D simulations: for example, Cande-
laresi and Brandenburg (2013) studied the minimum helicity to drive large-
scale dynamo action, Brandenburg and Dobler (2001) and Brandenburg et al.
(2002) investigated the effects of magnetic helicity losses through boundaries,
Brandenburg et al. (2008b) simulated simultaneous small-scale and large-scale
dynamos to measure the quenching of turbulent transport coefficients, and
Subramanian and Brandenburg (2014) disentangled the growth rates of small-
scale and large-scale fields.

Another set of models that are conceptually very similar to those discussed
above have the kinetic helicity vary spatially such that it has a sign change or
an “equator” (Mitra et al. 2010b,a; Rincon 2021). These simulations represent
another incarnation of an α2 dynamo but unlike in the case where the kinetic
helicity is constant, these setups lead to oscillatory solutions where the dynamo
wave propagates toward the equator reminiscent of the Sun (e.g. Baryshnikova
and Shukurov 1987; Rädler and Bräuer 1987).

The addition of imposed large-scale shear flow on top of helical turbu-
lence arising from the forcing fulfills the minimal requirements for a classical
αΩ dynamo (e.g. Parker 1955a; Steenbeck and Krause 1969a). Such systems
very often lead to cyclic solutions (e.g. Käpylä and Brandenburg 2009; Hub-
bard et al. 2011; Tobias and Cattaneo 2013; Pongkitiwanichakul et al. 2016),
see also Fig. 4; that can indeed be interpreted in terms of αΩ dynamos. A
more recent discovery is that also shearing non-helical turbulence can main-
tain large-scale magnetic fields (e.g. Yousef et al. 2008b,a; Brandenburg et al.
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2008a; Squire and Bhattacharjee 2015a; Teed and Proctor 2016). In such cases,
the α effect vanishes on average and straightforward explanation of the origin
of the dynamo in terms of mean-field theory is not possible. Theoretical in-
terpretation of shearing non-helical dynamos has turned out to be challenging
and it is still under debate in the community; see more details in Sect. 7.1.3.

The discussion has so far concentrated on simulations where the flow is
driven by an external force in the Navier–Stokes equation leading to a turbu-
lent solution. For completeness, we mention that there are also flows that are
less complex, but contain the necessary ingredients for dynamo action such
as kinetic helicity. Two prominent examples include the Roberts flows (e.g.
Roberts 1972) and the Galloway–Proctor flow (Galloway and Proctor 1992).
Often the Navier–Stokes equations are not solved in such cases. In some cases
these flows allow analytic calculation of mean-field transport coefficients due
to which these flows have been used extensively to compare with mean-field
dynamo theory (e.g. Rädler and Brandenburg 2009; Courvoisier et al. 2010;
Rheinhardt et al. 2014).

Fig. 4 Left: Instantaneous stream-wise magnetic field By in a simulation with forced he-
lical turbulence and imposed linear shear flow U = (0, xS, 0) with ReM = 209, PrM = 10,
and Sh = S/(urmskf) = −0.18, where urms is the turbulent rms-velocity and kf is the
wavenumber corresponding to the forcing scale. Right: space-time diagrams of the horizon-
tally averaged horizontal magnetic fields Bx(z, t) and By(z, t) from the same simulation.
Adapted from Käpylä and Brandenburg (2009).

3.2.2 Local simulations of dynamos due to convection (Class 2)

Replacing externally driven flows by ones that are produced by instabilities
occurring in nature while retaining the simplified geometry is the next step
in complexity. Dynamos driven by convection is naturally the most interest-
ing case for solar and stellar applications. While small-scale dynamos were re-
ported from local convection simulations starting in the late 1980s (Meneguzzi
and Pouquet 1989; Nordlund et al. 1992; Brandenburg et al. 1996; Cattaneo
1999), exciting a dynamo that produces appreciable large-scale magnetic fields
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in such simulations turned out to be significantly more challenging. Rigidly
rotating stratified or inhomogeneous convection produces kinetic helicity and
has therefore all the ingredients of an α2 dynamo. However, simulations often
still fail to produce appreciable large-scale magnetic fields (e.g Cattaneo and
Hughes 2006; Hughes and Cattaneo 2008; Favier and Bushby 2012). Large-
scale dynamos were obtained only when rapid rotation was considered (e.g.
Käpylä et al. 2009b, 2013a; Masada and Sano 2014; Guervilly et al. 2015;
Masada and Sano 2016; Guervilly et al. 2017; Bushby et al. 2018). Often
these dynamos are associated with hydrodynamic states that are dominated
by large-scale vortices (e.g. Chan 2007; Käpylä et al. 2011; Chan and Mayr
2013; Guervilly et al. 2014) that are possibly due to two-dimensionalization of
turbulent flows in the rapid rotation regime. Simulations including large-scale
shear lead to successful large-scale dynamos much more easily (e.g. Käpylä
et al. 2008, 2010b, 2013a; Hughes and Proctor 2009, 2013).

Fig. 5 Left: Instantaneous vertical velocity Uz in a simulation of rigidly rotating density-
stratified convection in a Cartesian slab. Right: time-depth diagrams of the horizontally
averaged magnetic field Bx(z, t) from simulations with PrM = 2 (top) and PrM = 8 (bot-
tom). Adapted from Masada and Sano (2014).

3.2.3 Representative global solar and stellar dynamo simulations (Class 3)

Global convective dynamo simulations have been around since the early 1980s
when the first large-scale dynamos were obtained from such models (Gilman
and Miller 1981; Gilman 1983). Initial simulations were made using the Boussi-
nesq approximation but anelastic models enabling density stratification were
soon also deployed (Glatzmaier 1984, 1985). The initial enthusiasm regarding
global simulations waned after the early simulations constantly yielded solu-
tions where the dynamo wave propagated poleward in contradiction to the
Sun. A renaissance of global modeling started with the creation of the ASH
(anelastic spherical harmonic) code in the late 90s and early 2000s (e.g. Mi-
esch et al. 2000; Elliott et al. 2000; Brun and Toomre 2002). Since then several
methods have been developed to model solar and stellar convection and dy-
namos either in spherical shells (e.g. Ghizaru et al. 2010; Fan and Fang 2014;
Simitev et al. 2015; Strugarek et al. 2017; Guerrero et al. 2019; Matilsky and
Toomre 2020; Hotta and Kusano 2021; Brun et al. 2022; Hotta et al. 2022)
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and wedges (e.g. Käpylä et al. 2010c, 2012b; Mabuchi et al. 2015; Käpylä
et al. 2019), or in a star-in-a-box setup where a spherical star is embedded
into a Cartesian cube (e.g. Dorch 2004; Dobler et al. 2006; Käpylä 2021, 2022;
Masada et al. 2022; Ortiz-Rodŕıguez et al. 2023; Hidalgo et al. 2024).

To capture global phenomena such as solar and stellar magnetic cycles on
the scale of the convection zone, simulations in global spherical geometry are
required. This inevitably means that the effective resolution in such models
is severely reduced compared to local models discussed above. Considering
the Sun and other late-type stars, the challenge is exacerbated by the im-
mense density stratification of the convection zone (more than 20 pressure
scale heights), time scales ranging from 12 days at the base of the convec-
tion zone to 5 minutes near the surface, high fluid and magnetic Reynolds
numbers (1012 and 109, respectively), low Prandtl numbers (Pr = 10−7 and
PrM = 10−3), and the strong variation of the Mach number between the base
of the convection zone and the surface (Ma ≈ 10−4 in deep convection zone,
transonic near the surface) (e.g. Kupka and Muthsam 2017; Schumacher and
Sreenivasan 2020; Jermyn et al. 2022). None of these characteristics can be
fully reproduced in current global simulations: the Reynolds numbers are typ-
ically of the order of a few hundred and Prandtl numbers of the order of unity.
The only characteristic that can be accurately modeled is the rotational in-
fluence on the flows, measured by Ra⋆F or the flux Coriolis number CoF (e.g.
Käpylä 2024). Furthermore, helioseismic and solar surface observations sug-
gest that the velocity amplitudes at large horizontal length scales are much
lower in the Sun in comparison to simulations (e.g. Hanasoge et al. 2012, 2020;
Proxauf 2021; Birch et al. 2024). This is commonly referred to as the convec-
tive conundrum (O’Mara et al. 2016) which is most likely the key reason why
there is no global simulation to date that captures the solar dynamo and in-
terior differential rotation fully self-consistently. Comparison of observations
with global simulations is a vibrant current topic and the reader is referred to
Hotta et al. (2023) and Käpylä et al. (2023) for more thorough discussions of
the current status of global numerical simulations targeting solar differential
rotation and solar and stellar dynamos, respectively.

Nevertheless, there have been many studies of convective dynamos as a
function of rotation which have revealed that cyclic solutions, akin to those in
the Sun, appear on a relatively narrow range of Coriolis numbers (e.g. Viviani
et al. 2018; Brun et al. 2022). For slow rotation – roughly corresponding to
Co ≲ 1 – the large-scale magnetic fields tend to be predominantly axisym-
metric and quasi-steady (e.g. Käpylä et al. 2017a; Strugarek et al. 2018). This
coincides with anti-solar differential rotation: the rotation rate at the equator
is slower than at the poles. A transition to a solar-like differential rotation
occurs around Co ≈ 1 (e.g. Gastine et al. 2014; Käpylä et al. 2014). The
large-scale magnetic fields in such simulations tend to be still predominantly
axisymmetric but the dominant dynamo mode is oscillatory (e.g. Ghizaru et al.
2010; Simitev et al. 2015; Strugarek et al. 2017, 2018; Viviani et al. 2018; Bice
and Toomre 2023). A number of simulations have appeared where a solar-
like dynamo with equatorward migration is found (e.g. Käpylä et al. 2012b;
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Fig. 6 Left: Azimuthally and temporally averaged mean angular velocity from global dy-
namo simulations of Ghizaru et al. (2010), here adapted from Racine et al. (2011) (top),
Augustson et al. (2015) (middle), and (Warnecke 2018) (bottom). Right: corresponding
time-latitude diagrams of the azimuthally averaged magnetic field Bϕ(θ, t), except in the

top panel where Bϕ(r, t) and Br(θ, t) are also shown.

Augustson et al. 2015; Strugarek et al. 2018; Warnecke 2018; Matilsky and
Toomre 2020; Käpylä 2022; Brun et al. 2022). Representative examples of
such solar-like solution are shown in Fig. 6. Comparisons of global convection-
driven dynamos with mean-field theory has concentrated on this particular
type of simulations which will be discussed in detail in Section 7.3.
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4 Mean-field dynamo theory

The large-scale spatiotemporal coherence of the solar magnetic field is sugges-
tive that perhaps its evolution can be explained by a model that has far fewer
degrees of freedom than the full 3D magnetohydrodynamic (MHD) problem
where all scales down to the dissipation scales are solved. The latter is, and
will likely remain, numerically infeasible for the foreseeable future (e.g. Kupka
and Muthsam 2017; Käpylä et al. 2023). The premise behind mean-field theory
is to solve only for the large scales while the small-scale (turbulent) effects are
parameterized by tensorial transport coefficients. There are several textbooks
(e.g. Moffatt 1978; Parker 1979; Krause and Rädler 1980; Zeldovich et al. 1983;
Rüdiger and Hollerbach 2004; Rüdiger et al. 2013; Moffatt and Dormy 2019)
and review articles (e.g Brandenburg and Subramanian 2005a; Rincon 2019;
Tobias 2021; Brandenburg et al. 2023) where mean-field dynamo theory is cov-
ered in great detail. Therefore only the most relevant parts of this theory will
be briefly repeated here.

The starting point of mean-field dynamo theory is the induction equation
which describes the evolution of the magnetic field:

∂B

∂t
= ∇× (U ×B − ηµ0J) . (12)

Inspection of Eq. (12) shows that a necessary requirement for the maintenance
of magnetic fields is that U ̸= 0 and that the induction term U ×B needs to
overcome magnetic diffusion. Therefore the magnetic Reynolds number

ReM =
uℓ

η
, (13)

where u and ℓ are typical velocity and length scales, has to exceed a critical
value which depends on the the properties of the flow and the geometry of
the system. The velocity and magnetic fields U and B must also be suffi-
ciently complex: for example, Cowling’s anti-dynamo theorem states that an
axisymmetric field cannot be sustained by a dynamo (Cowling 1933)2. Fur-
thermore, the Zeldovich theorem states that a planar flow cannot sustain a
dynamo (Zeldovich 1957).

In mean-field theory the idea is to follow the evolution of the large-scale
(mean) fields in detail whereas the small-scale (turbulent) contributions are
described via turbulent transport coefficients. To obtain closed equations for
the large scale quantities the mean and fluctuations need to be separated. This
is done using the Reynolds decomposition:

B = B + b, U = U + u, (14)

where B and U are suitably averaged mean fields and flows, and b and u are
the fluctuations. Azimuthal averaging is most often used in the case of solar

2 However, Plunian and Alboussière (2020) demonstrated recently that axisymmetric flow
can sustain a dynamo provided that the electrical conductivity is non-axisymmetric.
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and stellar dynamos whereas planar averages are often used in simulations of
Classes 1 and 2. These averages obey the Reynolds rules:

B = B, B1 +B2 = B1 +B2, Bb = 0, (15)

B1B2 = B1B2 + b1b2,
∂Bi

∂xj
= ∂Bi

∂xj
, ∂Bi

∂t = ∂Bi

∂t . (16)

The last relation containing the time derivative is exact for ensemble averag-
ing while the accuracy of spatial averaging improves the longer the averaging
time is. Using the Reynolds decomposition in Eq. (12) yields the mean-field
induction equation

∂B

∂t
= ∇×

(
U ×B + E − ηµ0J

)
. (17)

The additional term that appears in the mean-field induction equation is the
electromotive force (EMF):

E = u× b, (18)

which describes the correlations of small-scale velocities and magnetic fields.
Solving Eq. (17) thus requires that the EMF is known. It is customary to
represent E in terms of the mean magnetic field and its gradients

E i = E(0)

i + aijBj + bijk
∂Bj

∂xk
+ . . . , (19)

where E(0)

i is a contribution that can appear in the absence of a mean field,
aij and bijk are tensorial coefficients, and where the dots indicate possible
higher order derivatives (e.g. Krause and Rädler 1980). Equation (19) is an
approximation that is valid if the mean fields vary slowly in space and time
in comparison to the integral scale and turbulent time, respectively. In other
words, Eq. (19) assumes that the connection between E and B is local and
instantaneous.

However, in the general case the effects of non-locality cannot be neglected.
In this case the EMF can be formally written as (Rädler 2014)

E i(x, t) = E(0)

i +

∫ ∞

0

∫
∞

(
Aij(x, t; ξ, τ)Bj(x+ ξ, t− τ)

+Bij(x, t; ξ, τ)
∂Bj(x+ ξ, t− τ)

∂xk

)
d3ξdτ, (20)

where Aij and Bij are tensorial kernels which, in the kinematic case, depend
on U and η, and where the integrals run over all space and past time. In
practice, the contributions from sufficiently large ξ and τ become negligible
and real flows fall somewhere between the two extremes Eqs. (19) and (20).
Issues related to non-locality will be revisited in later sections.

Equation (19) is not particularly informative about the physical effects that
contribute to the EMF via the coefficients aij and bijk. An equivalent way of

writing the E in the absence of E(0)
is (e.g. Rädler 1980)

E = α ·B + γ ×B − β · (∇×B)− δ × (∇×B)− κ · (∇B)(s), (21)
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where α is the symmetric part of aij and describes the generation of mag-
netic fields through the α effect which is related to kinetic helicity of the flow
(Steenbeck et al. 1966). The anti-symmetric part of aij gives rise to magnetic
pumping, γi = −ϵijkajk/2, which describes an advection-like effect. β is a
second rank tensor describing turbulent diffusion, and δ is a vector describ-
ing the Rädler or Ω × J effect (Rädler 1969) that can also lead to dynamo
action. Finally, κ is a third-rank tensor acting on the symmetric part of the
mean magnetic field gradient tensor. The physical interpretation of κ is cur-
rently unclear. Another contribution to δ includes the shear-current or W ×J
effect, where W = ∇ × U (Rogachevskii and Kleeorin 2003, 2004). This ef-
fect is postulated to occur in shearing nonhelical turbulence and which enters
through an off-diagonal component of the magnetic diffusivity tensor. Also a
magnetic variant of the shear-current effect has been proposed (Rogachevskii
and Kleeorin 2004; Squire and Bhattacharjee 2015b, 2016) which is conjec-
tured to occur if the small-scale magnetic fields due to a small-scale dynamo
are sufficiently strong. Furthermore, fluctuations of kinetic helicity and α effect
have also been shown to support dynamos if large-scale shear is also present
in cases where the mean helicity and α effect vanish (e.g. Vishniac and Bran-
denburg 1997; Sokolov 1997; Proctor 2007; Kleeorin and Rogachevskii 2008;
Sridhar and Singh 2010; Jingade and Singh 2021).

Lastly, there is the E(0)
term which occurs in the absence of B. This term

can be thought to encompass battery terms such as the Biermann battery
(Biermann 1950) which are needed to seed the magnetic field in the absence of
magnetic monopoles when B = 0 initially. However, there are other possible

contributions to E(0)
that can occur if there is a pre-existing magnetic turbu-

lence (e.g. Rädler 1976), i.e., a small-scale dynamo where b ̸= 0 with B = 0,
or when a mean flow and cross-helicity u · b are present (e.g. Yoshizawa 1990;
Yoshizawa and Yokoi 1993; Brandenburg and Rädler 2013).

4.1 Analytic methods to compute turbulent transport coefficients

The main difficulty in mean-field dynamo theory lies in computation of the
turbulent transport coefficients such as those in Eq. (21). In the kinematic
case, where U is assume given, it suffices to solve for the fluctuating magnetic
field b which is given by

∂b

∂t
= ∇× (U × b+ u×B + G) + η∇2b, (22)

where G = u×b−u× b, is the nonlinear term. It is possible to derive an exact
equation for G but this leads to an infinite chain of equations for increasingly
higher order correlations of u and b. To avoid this, analytic methods truncate
the series of equations with typically computationally convenient rather than
physically justified approximations. The kinematic case considered above is
practically never the case in observed astrophysical systems and the magnetic
backreaction on the flow cannot be omitted. In that case also the momentum
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equation needs to be taken into account. A few of the analytic methods used in
mean-field theory are described below; the reader is referred to Rogachevskii
(2021) for a more thorough discourse.

4.1.1 First order smoothing approximation (FOSA)

In FOSA, G is neglected altogether (e.g. Moffatt 1978; Krause and Rädler
1980). This approximation is valid in cases when either

ReM ≪ 1, or St =
τcu

ℓ
≪ 1, (23)

where St is the Strouhal number and where τc is the correlation time of the
flow. In astrophysical systems ReM ≫ 1 practically always (e.g. Ossendri-
jver 2003; Brandenburg and Subramanian 2005a). On the other hand, often
in numerical simulations St ≈ 1 (e.g. Brandenburg and Subramanian 2005b),
and similar estimates can be obtained, e.g., for the solar granulation. There-
fore many simulations as well as the Sun fall outside the validity range of
FOSA. Nevertheless, the rigorous results obtained using FOSA are very useful
as benchmarks for methods that seek to determine turbulent transport coef-
ficients. The validity of FOSA estimates of turbulent transport coefficients is
discussed in more detail in Sect. 6.

In the high conductivity limit, where ReM ≫ 1 and St ≪ 1, FOSA yields
in the case of isotropic and homogeneous turbulence

E = αB − ηtµ0J , (24)

where the scalar α effect and turbulent diffusivity are given by

α = − 1
3τcω · u and ηt =

1
3τcu

2, (25)

where ω = ∇×u is the vorticity and ω · u is the kinetic helicity. In the general
anisotropic and inhomogeneous cases the transport coefficients are tensors but
they are also in principle tractable under FOSA (see, e.g. Rädler 1980). FOSA
is also often referred to as the second-order correlation approximation (SOCA).

4.1.2 Minimal tau approximation (MTA)

Another approximation that gained popularity in the early 2000s is the min-
imal τ approximation (MTA) (e.g. Kleeorin et al. 1990; Blackman and Field
2002; Rogachevskii and Kleeorin 2003). In this method time evolution equation
of E is derived:

∂E
∂t

= u̇× b+ u× ḃ, (26)

where the dots indicate time derivatives. In the case of isotropic and homoge-
neous turbulence the evolution equation for E is given by

∂E
∂t

= α̃B − η̃tµ0J + T , (27)
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where T contains triple correlations and where

α̃ = − 1
3

(
ω · u− ρ−1j · b

)
and η̃t =

1
3u

2. (28)

Relating the triple correlations to second correlations via T = −E/τ , where
τ is a relaxation time, and assuming stationarity yields the same expression
for E as in Eq. (24). There is, however, a significant difference which is the
appearance of the magnetic contribution to α via the current helicity j · b
(Pouquet et al. 1976):

α = − 1
3τ
(
ω · u− ρ−1j · b

)
≡ αK + αM and ηt =

1
3τu

2. (29)

The minimal τ approximation appears superior to FOSA in that it takes into
account the dynamical velocity through the Navier–Stokes equation due to
which there is the magnetic correction to the α effect. The latter can be inter-
preted to be a consequence of magnetic helicity conservation (see Sect. 4.3).
Furthermore, higher than second order correlations are to some degree retained
through T . However, the drawback is that there is no rigorously defined va-
lidity range for MTA; see the discussion in Rädler and Rheinhardt (2007).

4.1.3 Lagrangian methods for vanishing diffusivity

Another way to circumvent the issues related to FOSA is to consider a La-
grangian solution of the dissipationless induction equation, i.e.,

Bi(x, t) = Bj(a, 0)
∂xi

∂aj
, (30)

where a corresponds to the initial position of a particle. Such approach was
taken by, e.g., Parker (1971), Moffatt (1974), and Kraichnan (1976), which
yields the EMF as:

E i(x, t) = ⟨u× b⟩i = ⟨u×B⟩i = ϵijk⟨uL
j (a, t)Bl(a, 0)

∂xk

∂al
⟩, (31)

where uL corresponds to the Lagrangian velocity uL(a, t) = (∂x/∂t)a =
u(x, t), and where the averages denoted by angular brackets are taken over an
ensemble of trajectories. In the homogeneous isotropic case discussed above
this leads to

α(t) = 1
3αii(t) = − 1

3

∫ t

0
⟨uL(a, t) · ∇a × uL(a, τ)⟩dτ, (32)

and

β(t) = 1
6ϵijkβijk = 1

3

∫ t

0
⟨uL(t) · uL(τ)⟩dτ +

∫ t

0
α(t)α(τ)dτ

+ 1
6

∫ t

0

∫ t

0
⟨uL(t)·uL(τ ′)∇a ·uL(τ)−uL(t)·∇au

L(τ)·uL(τ ′)⟩dτdτ ′. (33)

While Eq. (32) closely resembles the FOSA expression, the Lagrangian result
for β is quite different from ηt in Eq. (25). The first term on the rhs of Eq. (33)
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corresponds to turbulent diffusion of a scalar which was originally derived
by Taylor (1922). The second term describes the effects of fluctuations of α,
which can theoretically lead to reduced turbulent diffusion resulting enhanced
growth of the magnetic field (e.g. Kraichnan 1976). The remaining terms in
Eq. (33) involve triple correlations whose physical interpretation is not as
straightforward.

4.2 Nonlinearity due to direct magnetic back-reaction

The expression Eq. (19) is linear in B and therefore applicable in the case
where the mean magnetic field is weak. When the mean field is non-negligible
the turbulent transport coefficients need to be reinterpreted as aij = aij(B)
and bijk = bijk(B). Arguably the simplest way of incorporating the nonlinear-
ity is to assume that the mean magnetic fields affect the velocity field U . A
common way to deal with the nonlinearity is to assume that the backreaction
ensues when the magnetic energy is comparable to equipartition with kinetic
energy via an algebraic quenching formula:

α =
α0

1 +
(
B/Beq

)2 , (34)

where Beq =
√
µ0ρU2 and α0 is the kinematic value of α. This can be un-

derstood as the back-reaction of the large-scale field on the small-scale flow
u. Another form of α quenching includes a factor containing the magnetic
Reynolds number

α =
α0

1 + ReM
(
B/Beq

)2 , (35)

and leads to a negligibly small α even for very weak fields if astrophysically
relevant values of ReM are used. This is known as catastrophic quenching in the
original sense (Cattaneo and Vainshtein 1991; Vainshtein and Cattaneo 1992;
Gruzinov and Diamond 1994, 1995; Bhattacharjee and Yuan 1995; Cattaneo
and Hughes 1996). This is now understood in terms of magnetic helicity con-
servation in fully periodic or closed systems; see Sect. 4.3. The Sun and other
astrophysical objects are not fully closed such that magnetic helicity can be
shed by various kinds of magnetic helicity fluxes. The preceding discussion has
concentrated solely on the nonlinearity of α, but in general all of the turbu-
lent transport coefficients feel the effects of dynamo-generated magnetic fields
(e.g. Kitchatinov et al. 1994; Pipin 2008; Karak et al. 2014; Rogachevskii and
Kleeorin 2024).

Models with just α quenching can still considered partly kinematic because
the large-scale flow U remains unaffected. Another type of nonlinearity deals
with the impact of large-scale magnetic field on the large-scale flows such as
the differential rotation via the Lorentz force (Malkus and Proctor 1975)

U̇ = . . .+
1

ρ
J ×B, (36)
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which quenches the large-scale flows taking part in the dynamo process. An
analogous contribution arises from turbulent Maxwell stress Mij = bibj/µ0ρ.
The small-scale Maxwell stress is often the dominant magnetic effect affecting
the large-scale flows in 3D simulations (e.g. Käpylä et al. 2017a; Hotta et al.
2022; Warnecke et al. 2025; Hotta 2025). However, a mean-field theory for the
turbulent Maxwell stress in rotating turbulence has yet to be developed and
it is not included in mean-field modeling.

In the preceding discussion the backreaction was considered to be due only
to the large-scale field B. In astrophysical systems the magnetic Reynolds
numbers are so large that a small-scale dynamo is very likely to be operating
(e.g. Warnecke et al. 2023; Rempel et al. 2023). The backreaction of b on the
turbulent transport coefficients is much harder to quantify rigorously. First,
this involves magnetic helicity conservation which is discussed below. Second,
the b due to a small-scale dynamo can also influencee u directly without a
recourse to magnetic helicity arguments. Developments in this direction are
discussed in Sect. 6.3.2. Concrete evidence of nonlinear effects due to small-
scale dynamos in numerical simulations are still quite sparse and sometimes
conflicting. Hotta et al. (2016) found non-monotonic behavior of the energy
of the mean magnetic fields as a function of effective ReM and argued that
a small-scale dynamo aids the large-scale field generation at sufficiently high
effective ReM, whereas Käpylä et al. (2017a) found a monotonic increase of

B
2
as a function of ReM. On the other hand, Cattaneo and Tobias (2014)

suggested that large-scale dynamo action is facilitated by suppression of the
small-scale magnetism. This issue is still open and awaits for further systematic
theoretical and numerical studies.

4.3 Magnetic helicity conservation

In ideal MHD, an important conserved quantity is the magnetic helicity

HM ≡
∫

A ·B dV, (37)

where A is the magnetic vector potential with B = ∇×A. This can be seen
from the evolution equation of HM:

∂HM

∂t
= −2

∫
V

E ·B dV −
∫
S

(ϕB +A×E) · n̂ dS. (38)

where E = −∇ϕ − ∂A/∂t is the electric field and ϕ is a scalar potential
(e.g. Brandenburg and Subramanian 2005a). In a fully periodic or fully closed
system the surface integral vanishes. Substituting Ohm’s law E = µ0ηJ−U×
B yields

∂HM

∂t
= −2ηµ0

∫
V

J ·B dV ≡ −2µ0ηC, (39)
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where C =
∫
V
J · B dV is the current helicity. Thus, magnetic helicity can

change only because of molecular magnetic diffusivity, implying that large-
scale fields can only saturate on a diffusive timescale (e.g. Brandenburg 2001).
Astrophysical dynamos practically always have ReM ≫ 1 such that HM can be
considered to be very nearly conserved (e.g. Brandenburg and Subramanian
2005a).

Magnetic helicity conservation has important consequences for non-linear
dynamos. Let us again consider isotropic and homogeneous helical turbulence
in a fully periodic system where E = αB− ηtµ0J , where α and ηt are scalars.
The magnetic helicity density can be separated the mean and small-scale parts
as A ·B = A·B+a · b. In the isotropic case, small-scale magnetic and current
helicities are related via a · b ≈ µ0j · b/k2f where kf is the typical scale of
turbulent eddies. With this information, an evolution equation for the total α
effect, α = αK + αM, can be written as (e.g. Brandenburg and Dobler 2002)

∂α

∂t
= −2ηtk

2
f

(
αB

2 − ηtµ0J ·B
B2

eq

+
α− αK

Rm

)
, (40)

where Rm = ηt/η is proportional to ReM. Equation (40) is a dynamical α
quenching formula which takes into account magnetic helicity conservation in
the absence of magnetic helicity fluxes. Allowing for such fluxes, the dynamical
equation for α reads:

∂α

∂t
= −2ηtk

2
f

(
αB

2 − ηtµ0J ·B
B2

eq

+
α− αK

Rm

)
−∇ · FαM . (41)

An equivalent representation is (e.g. Brandenburg 2008, 2018a)

α(B)=
αK+Rm[ηtµ0J ·B/B2

eq]−∇·FαM/(2k2f B
2
eq)−(∂α/∂t)/(2ηtk

2
f )

1 + Rm(B/Beq)2
.(42)

This equation reduces to the catastrophic quenching formula in Eq. (35) if the
terms proportional to Rm in the numerator vanish. However, this is valid only
in the stationary case under the assumption of uniform magnetic fields and
vanishing magnetic helicity fluxes. None of these conditions are expected to be
valid in real astrophysical systems. There are several potential sources of mag-
netic helicity fluxes (e.g. Blackman and Field 2000; Kleeorin et al. 2000; Vish-
niac and Cho 2001; Vishniac and Shapovalov 2014; Kleeorin and Rogachevskii
2022; Gopalakrishnan and Subramanian 2023). The most commonly invoked
fluxes include

FαM =
ηtk

2
f

B2
eq

(−κα∇αM −UαM + F
f
). (43)

where the first two terms of the rhs correspond to turbulent diffusion (e.g.
Covas et al. 1998; Mitra et al. 2010a) and large-scale advection (e.g. Sur et al.

2007) of αM, whereas the term F
f
encompasses additional contributions that
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can be independent of the large-scale magnetic field (see Gopalakrishnan and
Subramanian 2023, and references therein). The latter can in principle also
lead to dynamo action in the absence of kinetic helicity (e.g. Brandenburg and
Subramanian 2005c; Vishniac and Shapovalov 2014).

5 Prerequisites for accurate mean-field modeling

Before diving into the wealth of comparisons between 3D simulations and
mean-field theory, some statements regarding the procedure and depth of the
comparisons are needed. Roughly three levels of comparisons between simula-
tions mean-field theory can be readily distinguished:

1. Estimates and measurements of inductive and diffusive effects from simu-
lations without necessarily trying to use the results to explain any specific
dynamo simulation.

2. The use of measured or inferred mean-field transport coefficients to inter-
pret the simulation results qualitatively in terms of mean-field concepts.

3. Detailed extraction and parametrization of the transport coefficients from
3D simulations and their use in corresponding quantitative mean-field mod-
eling.

The first kind typically yields only limited insight into the actual dynamo
process in the simulations, whereas the second kind is possibly useful in char-
acterizing the dynamo in mean-field-theoretic terms. However, only the most
ambitious comparisons of the third kind can give exhaustive knowledge about
the dynamo mechanisms at play. To make such comparisons, the following
questions need to be addressed:

1. How to reliably measure turbulent transport coefficients such that they
faithfully reproduce the EMF of the 3D simulation?

2. Do mean-field models using these parametrization reproduce the dynamo
of the original simulations?

3. What is the uncertainty of the results obtained?

The first question can be reformulated such that it is a necessary requirement
that the reconstructed E is the same (or sufficiently similar) as that in the
original 3D simulation. The second point addresses the requirement that the
derived turbulent transport coefficients, when used in a mean-field model,
must reproduce the large-scale fields of the 3D simulation. Only if both of these
conditions are met, can it be relatively confidently stated that the mean-model
captures the behavior of the 3D simulation. However, this is an ambitious goal
and typically such accuracy is difficult to obtain. The third question refers
mostly to systematic uncertainties and is crucial for the assessment of the
reliability of the comparisons. This includes the methods of computation of
the transport coefficients and the assumptions that enter the ansatz used for
the EMF such as the treatment of nonlinearity and nonlocality.
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6 Methods to compute turbulent transport coefficients from
simulations

A major technical challenge is to compute all of the tensorial coefficients ap-
pearing in the EMF ansatz such as Eq. (21). In 3D simulations the three
components of E are readily available, but typically a much greater number
of tensorial components appear on the rhs of Eq. (21). Often this is not even
attempted and only a subset of the coefficients are retrieved. This is achieved
via ad hoc simplifications of the EMF ansatz Eq. (21), for instance, by ne-
glecting terms proportional to derivatives of B. The most common methods
to compute the turbulent transport coefficients from simulations along with
representative results and issues are discussed next.

6.1 Imposed field method

Arguably the simplest approach to compute the transport coefficients is to

impose a mean magnetic field B = B
(imp)

on the solution and measure the
induced E (see e.g. Brandenburg et al. 1990b; Cattaneo and Hughes 1996; Os-
sendrijver et al. 2001, 2002; Cattaneo and Hughes 2006; Käpylä et al. 2006a).
In principle it is possible to choose sufficiently many linearly independent im-
posed fields such that all of the turbulent transport coefficients in an ansatz
such as Eq. (21) can be extracted. However, this is cumbersome because a sep-

arate numerical experiment is needed for each B
(imp)

, and great care has to
be taken to ensure that the additional mean fields B(x, t) possibly generated

in the simulation remain small compared to B
(imp)

. Therefore the imposed
field studies have almost solely been done with uniform fields to study the α

effect (see, however Brandenburg et al. 1990a). Assuming that B
(imp) ≈ B,

Eq. (21) reduces to

E = α ·B(imp)
+ γ ×B

(imp)
, (44)

where the latter term is analogous to U × B, and where three experiments
suffice to compute all of the components of aij . The imposed field method
was first used to determine the α effect from simulations of rotating stratified
convection (e.g. Brandenburg et al. 1990b; Ossendrijver et al. 2001). These
studies showed that the horizontal and vertical components of α had oppo-
site signs reflecting the underlying anisotropy of convective flows. Later these
studies have been expanded to map aij as a function of latitude and rotation
from simulations of mildly turbulent convection by, for example, Ossendrijver
et al. (2002) and Käpylä et al. (2006a). The former found that for moderate
rotation (Co ≈ 1) the α effect is roughly proportional to cos θ which is also the
lowest order expectation from mean-field theory; see Fig. 7. Simulations prob-
ing cases corresponding to the base of the solar convection zone with Co ≈ 10
suggest increasing anisotropy and a latitudinal maximum of the horizontal α
effect around latitude 30◦ (Käpylä et al. 2006a).
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Fig. 7 Diagonal components of αij in units of 10−2
√
dg, where d is the depth of the

convection zone and g is the acceleration due to gravity, as functions of height and latitude
from Cartesian convection simulations of Ossendrijver et al. (2002) with Co = 2.4, Re =
ReM = 260 that are based on the system scale. The different panels correspond to latitude
θ = 0 (north pole, top row), 30◦, 60◦, and 90◦ (equator, bottom row). The horizontal
axis shows the vertical coordinate z in units of d. The convection zone spans the range
0 < z/d < 1.

The simulations of Ossendrijver et al. (2002) and Käpylä et al. (2006a)
also extracted the turbulent pumping effect γ. Downward pumping of mag-
netic fields was already demonstrated by earlier numerical studies (e.g. Nord-
lund et al. 1992; Brandenburg et al. 1996; Tobias et al. 1998, 2001; Dorch and
Nordlund 2001). Ossendrijver et al. (2002) showed that the vertical pumping
of large-scale fields to be dominated by the diamagnetic effect, and that with
sufficiently rapid rotation, horizontal components of γ are non-negligible (e.g.
Kichatinov 1991). The latitudinal pumping was found to be predominantly
equatorward and the azimuthal pumping retrograde in Ossendrijver et al.
(2002), both of which can potentially aid in obtaining equatorward propa-
gation of activity belts. This was confirmed by mean-field models in Käpylä
et al. (2006b), where physically plausible turbulent diffusivity ηt and merid-
ional circulation of the Sun along with α and γ coefficients from simulations
of Käpylä et al. (2006a) were used.
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The main caveat of the imposed field method is that B
(imp)

is a part of

the solution, and that in general B
(imp) ̸= B. This is often the case even if

there is no dynamo in the system, for example, due to inhomogeneity because
of boundaries (e.g. Käpylä et al. 2010b). This is also related to the choice
of averages: even in fully periodic cases with dynamos, for which the volume
averaged J vanishes, the relevant mean fields are Beltrami fields with some
scale km (e.g Brandenburg 2001). These issues can lead to erroneous estimates
of the turbulent transport coefficients. This can be seen by considering the
steady state solution of Eq. (17): E − µ0ηJ = 0. If B is indeed uniform, then
J = 0, further implying that E must also vanish if Eq. (44) is assumed. In

general B ̸= B
(imp)

in the steady state implying J ̸= 0, and therefore the
more general expression Eq. (24) needs to be used. Furthermore, by order of
magnitude the steady state solution and Eq. (44) yield αB ≈ ηB/ℓ, and lead
to a normalized amplitude of α̃ = α/u = η/uℓ = Re−1

M , where u is a typical
velocity amplitude. Thus in this procedure α appears to be catastrophically
quenched proportional to Re−1

M even in the kinematic regime (Cattaneo and
Hughes 2006). However, this is a misconception arising from the application
of the method outside of its range of validity.

Therefore the imposed field method as described by Eq. (44) is reliable
only if the actual mean field does not deviate greatly from the imposed field,

that is B ≈ B
(imp)

. This is satisfied in 2D where the method is exact and can
therefore provide an important benchmark for other methods. To ensure that

B ≈ B
(imp)

in 3D often involves resetting of the magnetic field periodically
before a steady state is reached (e.g. Ossendrijver et al. 2002; Käpylä et al.
2006a; Hubbard et al. 2009).

6.2 Multidimensional regression methods

6.2.1 Moments method of Brandenburg and Sokoloff (2002)

Another way to get around the problem of underdetermination is to consider
a temporally varying MHD solution and exploiting the fact that E and B
point to different directions at different times. Using a sufficiently large set of
realizations of E and B, it is possible to turn an underdetermined problem to
an overdetermined one, where the transport coefficients can be obtained by
fitting (Brandenburg and Sokoloff 2002). The potential benefit of this method
is that the transport coefficients can be obtained from the same calculation
without resorting to additional runs with imposed fields. Assuming local and
instantaneous relation between B and E and that the mean fields depend only
on one coordinate (z), Eq. (19) reduces to:

E i = αijBj + ηijz∂zBj , (45)

with eight unknowns αij and ηijz. In Brandenburg and Sokoloff (2002) this
was circumvented by forming moments of Eq. (45) with Bi and ∂zBi. The
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Fig. 8 Upper four panels: αij from inverting Eq. (46) from a shearing box simulation of
the magnetorotational instability (Brandenburg and Sokoloff 2002). Lower four panels: ηijk
from Eq. (46) from the same simulation.

resulting eight equations are time averaged and the solution is given by two
matrix equations

E(i)(z) = C(i)(z)M(z), for i = x, y. (46)

The matrices E(i) and M (i) contain the moments of mean fields and their
gradients with E, and with B and ∂zB themselves, respectively, whereas C(i)

contains the time-averaged transport coefficients. Figure 8 shows the results
from a density-stratified simulation of the magnetorotational instability (MRI)
from Brandenburg and Sokoloff (2002). It is not a priori known how αij or ηijk
should look like in this case. However, −ηyxz is responsible for diffusing the
Bx component of the mean field. This component is predominantly positive,
implying anti-diffusion which is considered unphysical. Further experiments by
Brandenburg and Sokoloff (2002) suggest that assuming ηijk to be diagonal
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Fig. 9 Components of the EMF (black lines) and fits to it using only the α tensor and α
(magenta) and β (red). Adapted from Simard et al. (2016).

removes the problem with anti-diffusion, but there is no physical justification
to do this. They also concluded that non-local effects may play a role in that
negative diffusion at large scales can be compensated by positive one at higher
wavenumbers.

6.2.2 Singular value decomposition (SVD)

The SVD method is similar to the moments method described above and relies
on the availability of data to overcome the problem of underdetermination of
the EMF ansatz. In this method two time-dependent functions

y(t) = E i(t, r, θ), and Xk(t) = [Bi(t, r, θ), ∂rBi(t, r, θ), ∂θBi(t, r, θ)] (47)

are constructed from the EMF and magnetic field data. The quantity ϕk =
[aij(r, θ), bijr(r, θ), bijθ(r, θ)] contains the turbulent transport coefficients. The
parametrization of the EMF is given by

y(t) =
n∑

k=1

ϕkXk(t), (48)

where n depends on the ansatz for the EMF. The coefficients ϕk are required
to minimize the least squares fit characterized by a standard χ2 approach.
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Fig. 10 Top: αϕϕ, αθθ, γr, and γθ extracted from an EULAG simulation where only the
α tensor is retained in the SVD analysis. Bottom: same as the top panel but where the β
tensor was retained in the fitting. Adapted from Simard et al. (2016).

The SVD method was initially used to extract only the α tensor com-
ponents from global convection simulations (e.g. Racine et al. 2011; Simard
et al. 2013; Nelson et al. 2013; Augustson et al. 2015; Brun et al. 2022; Shi-
mada et al. 2022). In these studies the EMF was assumed to have the form
E = α · B + γ × B. However, the gradients of B and the corresponding
contributions to the E cannot in general be dropped, and in a subsequent
study, Simard et al. (2016) generalized the EMF to include all of the terms
in Eq. (21). Figure 9 illustrates that with the SVD method the reconstructed
E is in very good agreement with the actual EMF in both of the aforemen-
tioned cases. The caveat here is that in the SVD method the coefficients are
fitting parameters and the method does not guarantee that they are correct
or physically realizable.

Nevertheless, the results of Simard et al. (2016) and the earlier studies
show that the diagonal components of α are in qualitative agreement with
theoretical arguments that α ∝ −ω · u, although the magnitude is roughly
five times lower than the FOSA estimate irrespective whether the diffusive
contribution to the EMF were retained. Similarly the diagonal components of
β are predominantly positive where statistically relevant, but again about five
times lower than the FOSA estimates. The two experiments discussed above
give very similar results for α and γ; see Fig. 10 and the effects due to the
diffusive contributions were therefore found to be small. A (although still not
fully conclusive) test of the validity of the coefficients is to use them in a mean-
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field model of the same system from which they were extracted. Efforts to this
direction are discussed further in Sect. 7.

6.3 Test field methods

6.3.1 Quasi-kinematic test field method

Another way to avoid the issues with imposed fields is to use the test field
method (Schrinner et al. 2005, 2007; Brandenburg 2005b), where the imposed
fields are replaced by a sufficient number of linearly independent test fields. A
separate induction equation for the fluctuating fields is solved for each of the

test fields. That is, for each test field B
(p)

,

∂b

∂t

(p)

= ∇×
(
U × b(p) + u×B

(p)
+ G(p)

)
+ η∇2b(p), (49)

is solved, where the velocity fields U and u come from the simulation (main

run). Neither the test fields B
(p)

nor the small-scale fields b(p) react back on

the flow. The non-linear term G(p) = u× b(p) −u× b(p) is fully retained such
that the method is superior to FOSA and MTA. This flavor of the test field
method is formally applicable to cases where the small-scale magnetic field
b vanishes when B → 0, thus excluding cases with b is due to a small-scale
dynamo. On the other hand, the velocity field U can already be affected by
a magnetic field B in the main run. This is why this flavor is referred to as
the quasi-kinematic test field method. Non-linear extensions of the test field
method are discussed in Sect. 6.3.2.

In the simplest case the mean fields are assumed to depend only on a single
coordinate, here z. The EMF is then

E i = aijBj − bijµ0Jj , (50)

where bi1 = bi23 and bi2 = −bi13. The EMF has only x and y components, and
aij and bij have four components each. A sufficient choice of test fields is

B
1c

= B0(cos kz, 0, 0), B
2c

= B0(0, cos kz, 0), (51)

B
1s

= B0(sin kz, 0, 0), B
2s

= B0(0, sin kz, 0), (52)

where k is a wavenumber. This leads to two linear sets of equations from which
aij and bij can be solved unambiguously. If harmonic test fields are used,
higher order derivatives of B can be considered to have been already included
because, for example, (∂n/∂nx)(cos kx) = kn cos

(
kx+ πn

2

)
. The coefficients

aij and bij can be recast as

α = 1
2 (a11 + a22), γ = 1

2 (a21 − a12), (53)

ηt =
1
2 (b11 + b22), δ = 1

2 (b12 − b21), (54)
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Fig. 11 Top: α normalized by the FOSA estimate α0 from isotropically forced helical
turbulence as a function of the magnetic Reynolds number. Bottom: ηt normalized by the
FOSA estimate ηt0 from the same simulations. Adapted from Sur et al. (2008).

which describe the α effect, turbulent pumping (γ), turbulent magnetic diffu-
sivity (ηt), and the Rädler/shear-current effect (δ), respectively.

Representative results from homogeneous isotropically forced helical tur-
bulence are shown in Fig. 11. Here the measured α effect and ηt turbulent dif-
fusivity are normalized by the FOSA estimates α0 = 1

3urms, ηt0 = 1
3urmsk

−1
f ,

where kf is the energy-carrying scale of turbulence, and where the former is
relevant for fully helical turbulence. Figure 11 shows that both α and ηt are
proportional to ReM = urms/ηkf for ReM ≲ 1 in accordance with the corre-
sponding FOSA result in the low conductivity limit, see Krause and Rädler
(1980). Furthermore, for ReM ≳ 10, α and ηt converge to roughly constant
values that agree with within the error estimates with the FOSA estimates.
It is remarkable how good the correspondence is given the rather strict valid-
ity constraints of FOSA. However, the quasi-kinematic test field method itself
is formally valid only when a small-scale dynamo is absent. This is another
stringent condition because the critical magnetic Reynolds number is around
30 for PrM = 1 (e.g. Haugen et al. 2004) and increases to a few hundred for
PrM → 0 (Kleeorin and Rogachevskii 2012; Warnecke et al. 2023).

This method has been used to study the turbulent transport coefficients
in shearing turbulence without (Brandenburg et al. 2008a) and with kinetic
helicity (Mitra et al. 2009a). These studies did not find conclusive evidence
for a dynamo effect through the Rädler/shear-current effect in shearing tur-
bulence, which is mediated via off-diagonal components of ηij . Furthermore,
Brandenburg et al. (2017b) found a contribution to ηt due to kinetic helicity
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from forced turbulence simulations from analysis of test field data. Such contri-
butions go beyond FOSA and arise only when fourth order correlations in the
fluctuations are considered in the computation of transport coefficients (e.g.
Nicklaus and Stix 1988; Brandenburg et al. 2025; Rogachevskii et al. 2025).
A further new aspect discovered with the help of test field calculations is the
scaling of the α effect in density-stratified systems (Brandenburg et al. 2013a).
While earlier theoretical studies yielded α ∝ ρσurms with σ > 1 (Rüdiger and
Kichatinov 1993), the analytic results by Brandenburg et al. (2013a) suggest
that σ = 1

2 . Such scaling was also found from forced turbulence and sufficiently
stratified turbulent convection simulations for slow rotation (Co ≲ 0.2) using
the test field method in Brandenburg et al. (2013a). Results at more rapid
rotation were less coherent but consistently yielded σ < 1 in contrast to the
earlier theoretical predictions.

Fig. 12 Left: α̃(k) (top) and η̃t(k) (bottom) normalized by the FOSA estimates from
isotropically forced helical turbulence as a function of the wavenumber k of the test fields.
Adapted from Brandenburg et al. (2008c). Right: α̃(ω) (top) and η̃t(ω) (bottom) normalized
by the FOSA estimates from isotropically forced helical turbulence as a function of the
frequency ω of the test fields. Adapted from Hubbard and Brandenburg (2009).

The scale dependence of α and ηt for the Roberts flow and for isotropically
forced homogeneous turbulence were studied in Brandenburg et al. (2008c).
The dependence of the coefficients on spatial scale was found to be approxi-
mately Lorentzian:

α̃(k) =
α0

1 + (k/kf)2
, η̃t(k) =

ηt0
1 + (k/2kf)2

. (55)

The results are shown in the left panels of Fig. 12. Such non-local contributions
to α and ηt lead to a modification of the growth rate of the dynamo. How-
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ever, Brandenburg et al. (2008c) concluded that the non-local effects become
important only when the scale of the mean field is comparable to the dom-
inant scale of turbulence. In a subsequent study, Hubbard and Brandenburg
(2009) investigated temporal non-locality or memory effects for passive scalar
transport and dynamos in Roberts flow and in turbulence. In analogy to the
spatial non-locality, they found that memory effects become important when
the large-scale field varies on a similar timescale as the flow itself, translat-
ing to a Strouhal number of the order of unity or larger; see the right panels
of Fig. 12. Finally, Rheinhardt and Brandenburg (2012) considered the case
where both spatial and temporal scale separations are poor and suggested to
represent the non-local EMF as (see also Pipin 2023)(

1 + τ
∂

∂t
− ℓ2

∂2

∂z2

)
E i = α

(0)
ij Bj + η

(0)
ijkBj,k, (56)

where τ and ℓ are a temporal and spatial scale, and where the superscript
zero refers to the transport coefficients for k → 0 and ω → 0. Rheinhardt
and Brandenburg (2012) admitted that higher order terms are likely needed
to fully capture the non-locality but that this expression nevertheless gives
a flavor of the issue. A qualitative change of behavior in comparison to the
purely local description is that the excitation threshold for the dynamo is
lowered if the dynamo is oscillatory (e.g. Rheinhardt and Brandenburg 2012).
A similar conclusion was reached by Brandenburg and Chatterjee (2018) who
implemented Eq. (56) in a spherical mean-field dynamo model representative
of the Sun. Furthermore, Rheinhardt et al. (2014) showed that the dynamos
in two flavors of non-helical Roberts flow (Roberts 1972) are driven by off-
diagonal components of the aij tensor when memory effects are retained.

Quenching of turbulent transport coefficients was studied by Karak et al.
(2014) by means of the test field method from simulations of the Roberts
flow, forced turbulence, and convection where a large-scale external field was
imposed. Quenching formula proportional to [1+pi(B/Beq)

qi ]−1 was assumed,
where pi and qi were fit parameters. The quenching exponent qi depends on
the type of the flow and whether Beq is estimated from the unquenched flow
or not. In the latter case the exponent qα for the α effect was 2 for turbulent
convection and 3 for isotropically forced homogeneous turbulence whereas the
qηt

for the turbulent diffusivity ranged from 1.1 to 1.3. Strongly anisotropic
quenching has been assumed in some solar dynamo models in order to assure
that turbulent diffusion remains subdominant in determining the cycle period
(e.g. Chatterjee et al. 2004; Karak and Choudhuri 2011). Curiously, Karak
et al. (2014) found no evidence of such strong anisotropy even in cases where
the large-scale field reached 102 times equipartition.

The test field method as presented above can also be applied to inhomo-
geneous cases such as convection in a Cartesian box. An example is shown
in Figure 13 where horizontally averaged kinetic helicity and the coefficients
according to Equations (53) and (54) are shown from a rotating density strati-
fied convection simulation in Cartesian coordinates (Käpylä et al. 2009a). The
profiles of α and γ are similar to those obtained with the imposed field method
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Fig. 13 Turbulent transport coefficients α(z) (top left), γ(z) (top right), ηt(z) (bottom
left), and δ(z) (bottom right) from Run B of Käpylä et al. (2009a) with Re = 35 and
Co = 0.36. The convection convection zone is situated between z/d = 0 and z/d = 1.

(Ossendrijver et al. 2001), which also roughly agree with theoretical (FOSA)
predictions. The vertical pumping effect γ is downward only in the upper con-
vection zone, whereas ηt is positive everywhere. Stratified convection is highly
non-local such that flows can traverse long distances and even penetrate the
whole convection zone. Therefore the assumption of a local and instantaneous
connection between E and B is a priori not well justified. Figure 14 shows
the same turbulent transport coefficients as in Fig. 13 but computed with
test fields with different vertical wavenumber k ranging between 0 . . . 3, where
k = 0 corresponds to an imposed field. These results show that some of the
coefficients, such as α and γ can even change sign as a function of spatial scale,
whereas the amplitudes of ηt and δ are reduced for higher values of k3.

Considering stars such as the Sun, the method has to operate spherical
coordinates. Assuming axisymmetry and that non-local effects can be omitted,
a total of 27 independent aij and bijk coefficients are needed; see Schrinner
et al. (2005, 2007). In these, and in subsequent works (e.g. Schrinner 2011;
Schrinner et al. 2011, 2012; Schrinner 2013; Warnecke et al. 2018; Viviani
et al. 2019), the test fields were chosen to be

(Br, Bθ, Bϕ)=(1, 1, 1), (Br, Bθ, Bϕ)=(r, r, r), (Br, Bθ, Bϕ)=(θ, θ, θ).(57)

The EMF is given by

E i = ãijBj + b̃ijr∂rBj + b̃ijθ∂θBj , i, j = r, θ, ϕ. (58)

The coefficients can be worked out from Eq. (58) using Eq. (21), (see e.g.
Appendix A of Viviani et al. 2019). Figure 15 shows representative results for
the components of α and β from Warnecke et al. (2018). The diagonal com-
ponents of αij and the estimate αK = − 1

3τω · u, where τ = (urmsk1)
−1 is an

3 In Käpylä et al. (2009a) the coefficient δ had a sign error which is corrected in Fig. 14.
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Fig. 14 Effects of non-locality on the turbulent transport coefficients α, γ, ηt, and δ from
stratified convection in Cartesian geometry. Data from Runs B11-B14 of Käpylä et al.
(2009a). The legend indicates the normalized wavenumber of the test fields.

estimate of the convective turnover time, are in rough qualitative agreement.
This entails a positive α effect in the bulk of the convection zone in the north-
ern hemisphere. However, the α effect in density stratified rotating convection
is necessarily anisotropic and the αK estimate cannot be expected to be accu-
rate in detail (e.g. Kleeorin and Rogachevskii 2003). Furthermore, the diagonal
components of βij are predominantly positive. Non-positivity of turbulent dif-
fusion is most likely unphysical but it can also be related to insufficient data
or non-local effects which were not considered.

A check of the validity of the computed transport coefficients is that they
are used to reconstruct the actual EMF of the main run. An example is shown
in Fig. 16 for the simulation presented in Viviani et al. (2019). While rea-
sonable qualitative agreement can be found especially at low latitudes, the
magnitude of the reconstructed EMF is higher than the actual EMF by a fac-
tor of two to three; see Viviani et al. (2019). A possible explanation is that
the test fields in Eq. (57), vary on large scales that are comparable to coher-
ent structures in convective flows in which case non-local effects can become
important. Therefore the assumption of a local and instantaneous correspon-
dence between B and E can be questioned in the case of convection. On the
other hand, correspondence between a DNS and a mean-field model was found
to be much better for a forced turbulence simulation with a significantly higher
scale separation and ReM ≈ 1 where the effects of non-locality are likely to be
less important (Warnecke et al. 2018).

6.3.2 Nonlinear test field methods

The quasi-kinematic test field method is formally applicable to situations
where also the small scale fields owe their existence to B. This is a rather re-
strictive condition from astrophysical perspective where small-scale dynamos
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Fig. 15 Nine panels on the left: time averaged components of the αij tensor, αK =

− 1
3
τω · u, αM = 1

3
τj · b, and Ω = Uϕ/r sin θ + Ω0 from a convection simulation in a

spherical wedge (Warnecke et al. 2018). Nine panels on the right: Independent components
of β and δ from the same simulation.

are likely ubiquitous (e.g. Rempel et al. 2023). A succession of methods to gen-
eralize the quasi-kinematic test field method have been developed to accom-
modate this (Rheinhardt and Brandenburg 2010; Käpylä et al. 2020a, 2022).
These methods have gradually included more of the terms in the Navier-Stokes

equation that are now needed for the calculation of the test field E(p)
. Here

only the most general case, the compressible test field method, is discussed
(Käpylä et al. 2022). In this method the full set of MHD equations are solved
for the main run (mr) where a self-consistent small-scale and large-scale dy-
namos can operate, a zero run (0) where the mean magnetic field is zero, and
for each of the imposed test fields (B). For example, for isotropically forced
homogeneous turbulence this corresponds to evolving u, b, and h = c2s ln ρ for
each of these cases. A full mean-field representation of this system requires



42 Petri J. Käpylä

Fig. 16 Top row: The actual radial, latitudinal and longitudinal components of the E from
the simulation presented in Viviani et al. (2019). Bottom row: the same quantities but
reconstructed using Eq. (21) with the measured turbulent transport coefficients and mean
magnetic field B in the same simulation.

that the mean electromotive force E(B)
, the ponderomotive force

F (B) = (j × b)/ρref − u · ∇u+ 2νs · ∇h)(B), (59)

and the mean mass source

Q(B) = −(u · ∇h)(B), (60)

where ρref is a constant reference density and s is the fluctuating rate-of-
strain tensor, are computed. However, all of these correlations contain terms
that are ultimately non-linear in B. Furthermore, there is no direct connection
between the main run and the test field equations. In Käpylä et al. (2022) this
is circumvented by assuming that b(mr) ≈ b = b(0) + b(B). This is not fully
rigorous but it is assumed to be sufficiently accurate if the actual mean field in
the main run and the test fields are similar. This leads to freedom in choosing
which combinations of the fluctuating quantities from the main run, zero run,
and test field runs are used to construct the turbulent correlations that are
non-linear, such as (u×b)′(B), in the mean field. In the case studied in Käpylä
et al. (2022) this leads to a total of 32 possible flavors of the compressible test
field method, four of which (see also Rheinhardt and Brandenburg 2010) were
studied in more detail.

So far the compressible test field method has been applied to study the
shear dynamo problem along with simpler configurations involving the Roberts
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flow. For the shear dynamo the results from compressible test field method
are in agreement with those of the quasi-kinematic test field method in that
no evidence of a coherent shear-current or Rädler effects were found, even
in a regime where a strong small-scale dynamo was present. Currently the
usefulness of the compressible test field method is limited to relatively low
ReM because the linear test field solutions are prone to a small-scale dynamo-
like instability. This issue is alleviated to some degree by resetting similarly as
in the case of the quasi-kinematic test field method (e.g. Hubbard et al. 2009).

7 Comparisons of 3D dynamo simulations with mean-field theory
and models

7.1 Forced turbulence simulations with and without shear (Class 1)

7.1.1 Helically forced turbulence without shear (α2 dynamo)

Forced turbulence simulations in periodic cubes offer the simplest point of
comparison between DNS and mean-field models. The helically forced case
with no shear constitutes the minimal ingredients of an α2 dynamo in the
parlance of mean-field theory. The dispersion relation for such a dynamo in
the kinematic regime is given by (e.g. Moffatt 1978; Krause and Rädler 1980)

λ = |α|k − ηTk
2, (61)

where k is the wavenumber of the magnetic field and ηT = ηt + η. The maxi-
mum growth rate is obtained at kmax = |α|/(2ηT), where kmax is the wavenum-
ber corresponding to the fastest growing mode. Assuming fully helical turbu-
lence forced at wavenumber kf , such that α = 1

3urms and ηt =
1
3urmsk

−1
f , the

wavenumber of the fastest growing for sufficiently large ReM with ηt ≫ η is
kmax = 1

2kf (Brandenburg et al. 2002). In the general case the flow is not fully
helical and the molecular diffusivity η cannot be neglected. Then, α = 1

3ϵfurms,
where ϵf = ω · u/(urmsωrms) is the fractional helicity, and the expression for
the wavenumber of the fastest growing mode is

kmax =
ϵfkf

2(1 + Re−1
M )

. (62)

This expression was obtained by Brandenburg et al. (2002) who also found
from simulations that kmax increases for increasing ReM in accordance with
Eq. (62).

The wavenumber of the fastest growing mode corresponds to a maximum
growth rate is λmax = α2/(4ηT), suggesting that the growth rate of the mag-
netic field is quadratic in the kinetic helicity due to α ∝ ω · u. Simulations
provide support for such scaling; see Fig. 8 of Subramanian and Brandenburg
(2014). However, in the same study λmax was found to be about twice larger
than the actual growth rate λ in the 3D simulation. The reason for this dis-
crepancy is currently unclear but it is known that an additional correction to
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Fig. 17 Left: Average energy of the mean magnetic field as a function of time (solid lines)
along with predictions based on magnetic helicity conservation (dotted lines). Adapted from
Brandenburg (2001). Right: quenching of α and ηt from dynamo simulations driven by helical
turbulence (Brandenburg et al. 2008b)

the dispersion relation arises due to a kinetic helicity dependence of turbulent
diffusivity (Nicklaus and Stix 1988; Mizerski 2023; Rogachevskii et al. 2025)
which was reported from simulations by Brandenburg et al. (2017b, 2025).
Furthermore, the dispersion relation (61) is also modified if a memory effect,
or temporal non-locality, is present such that α = α(λ) and ηt = ηt(λ) (Hub-
bard and Brandenburg 2009). While this effect was found to be important
for the Roberts flow in Hubbard and Brandenburg (2009), it has yet to be
demonstrated for turbulence.

The non-linear state of a fully periodic helical dynamo is of mean-field the-
oretical interest because it can be used to study the effects of magnetic helicity
conservation. In this context, Brandenburg (2001) studied the non-linear evo-
lution of large-scale dynamos using helically forced turbulence without shear.
Such simulations produce large-scale fields are of Beltrami type for which
J = aB. Furthermore, the saturation of the mean field in these simulations
was found to occur on a resistive timescale in accordance with arguments aris-
ing from mean-field theory and magnetic helicity conservation; see the left
panel of Fig. 17. Furthermore, quenching of α and ηt as functions of ReM
was studied using the quasi-kinematic test field method in Brandenburg et al.
(2008b). The magnetic diffusivity was shown to be decreased by a factor of
roughly 5 in the range ReM = 2 . . . 600, while the total α effect defined via
Eq. (29) was reduced by a factor of 14; see right panel of Fig. 17. The reduction
of α was attributed to be almost solely due to the increasing αM with ReM.
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7.1.2 Helically forced turbulence with shear (αΩ dynamo)

Another example of a Class 1 dynamo is the α-shear dynamo, which is driven
by imposed shear flow and helical turbulence (e.g. Käpylä and Brandenburg
2009; Hubbard et al. 2011; Tobias and Cattaneo 2013; Cattaneo and Tobias
2014; Pongkitiwanichakul et al. 2016). Such a setup corresponds to classical
αΩ or α2Ω dynamos depending on the strength of the shear. In shearing
box simulations with uniform imposed shear U = (0, xS, 0) this is denoted
by the shear number Sh = S/(urmskf). Such dynamos produce cyclic magnetic
fields where the propagation direction is consistent with the Parker-Yoshimura
rule (Brandenburg and Käpylä 2007). Furthermore, assuming a stationary
saturated state of the dynamo, the cycle frequency ωcyc is given by

ωcyc = ηTk
2
m, (63)

where km is the wavenumber of the large-scale mean magnetic field. Assuming
Eq. (63) to hold also in the nonlinear regime where ηT = ηT(B), the relation
ωcyc(B) can be interpreted as a proxy of the quenching of the magnetic dif-
fusivity. This was done in Käpylä and Brandenburg (2009); see Fig. 18. The
results suggest that quenching becomes significant for B/Beq ≳ 1 and that
the onset of quenching depends on the strength of the shear measured by Sh.
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Fig. 18 Normalized turbulent magnetic diffusivity η̃t = ηt/ηt0, where ηt0 = urms/(3kf),
where ηt is computed from Eq. (63) as a function of the mean magnetic field in units of Beq.
The curves show quenching functions proportional to η̃t/[1 + pηt (B/Beq)2] with η̃t = 1.25
(1.0) and pηt = 0.015 (0.5) for the upper (lower) curve. Based on data from Fig. 10 of
Käpylä and Brandenburg (2009).

An important question to consider is the influence of a concurrent small-
scale dynamo on the large-scale field generation. This was studied by Karak
and Brandenburg (2016) in a series of simulations where the relative impor-
tance of the small-scale dynamo was varied. They found that when the small-
scale dynamo was absent, the small-scale magnetic fields were positively cor-
related with the cyclic large-scale field. When the small-scale dynamo was also
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excited, two scenarios appeared. First, if the large-scale field was weaker than
the equipartition value, the small-scale fields were almost independent of the
large-scale field. Second, if the large-scale field was stronger than equipartition,
the small-scale field was anti-correlated with the cycle, interpreted as suppres-
sion of the SSD. In the Sun the small-scale magnetic fields are independent of
– or weakly anticorrelated with – the cycle, suggesting that both a small-scale
and a large-scale dynamo are operating. Furthermore, Karak and Brandenburg
(2016) found decent agreement between their simulation results and analytic
theory of tangling of small-scale fields in the absence of a small-scale dynamo
(Rogachevskii and Kleeorin 2007).

Hubbard et al. (2011) studied helically forced dynamos with shear in a
parameter regime where both α2 and α2Ω dynamos were possible. While an
oscillatory α2Ω mode was found to have the fastest growth rate, it was often
overwhelmed by a non-oscillatory α2 mode in the nonlinear regime. Some-
times such transition was found to occur long after the dynamo had reached
a saturated state. This was mentioned as a challenge for mean-field models
and calls for methods to extract turbulent transport coefficients in the nonlin-
ear regime. Hubbard et al. (2011) connected these transitions to the Sun and
conjectured that a transition between α2Ω and α2 modes could explain, for
example, the Maunder minimum. However, Hubbard et al. (2011) found only
a unidirectional transition α2Ω → α2 such that the original oscillatory mode
never recovered.

7.1.3 Nonhelically forced turbulence with shear

While the theoretical interpretation of helically forced dynamos with shear is
relatively straightforward, the situation is much less obvious when the turbu-
lence is non-helical. Mean-field effects leading to such shear dynamo were de-
rived theoretically much before a numerical demonstration. These include the
Ω×J or Rädler effect (Rädler 1969) and the shear-current effect (Rogachevskii
and Kleeorin 2003, 2004), which rely on the off-diagonal component ηyx of the
diffusivity tensor for driving the dynamo. More specifically, a necessary condi-
tion is that ηyx and S have opposite signs (e.g. Brandenburg and Subramanian
2005a). Shear dynamo action was demonstrated numerically by Yousef et al.
(2008b,a), and Brandenburg et al. (2008a), showing that the growth rate of
the dynamo is proportional to the shear rate S for weak shear. The large-scale
magnetic fields produced by such dynamos tend to be quasi-steady or show
random polarity reversals (e.g. Brandenburg et al. 2008a; Teed and Proctor
2017); see the left panel of Fig. 19.

However, test field simulations of Brandenburg et al. (2008a) yielded a
non-zero ηyx, but the sign was not conducive to dynamo action. Subsequent
studies have either found consistency with zero or the wrong sign for ηyx (e.g.
Mitra et al. 2009a). More recently, in a series of papers Squire & Bhattacharjee
introduced a magnetic shear-current effect that is analogous to its kinematic
counterpart, but it is driven by small-scale magnetism (Squire and Bhattachar-
jee 2015a, 2016). However, results from nonlinear test field method have not
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Fig. 19 Left: Horizontally averaged stream-wise magnetic field By from a simulation of
nonhelical shear dynamo. Adapted from Teed and Proctor (2017). Right: Dynamo growth
rate from mean-field models as functions of the strengths of the incoherent α and shear-
current effects quantified by the dynamo numbersDαS andDηS . Adapted from Brandenburg
et al. (2008a).

confirmed a sign change between the kinematic and small-scale dynamo cases
(Käpylä et al. 2020a, 2022). Therefore the existence of coherent shear-current
effect – in its kinematic and magnetic incarnations – remains inconclusive.
The most likely cause for the nonhelical shear dynamo is due to incoherent
dynamo effects such as the cumulative effects of fluctuations of the on average
zero α effect or kinetic helicity with the shear flow (e.g. Brandenburg et al.
2008a; Käpylä et al. 2022). This is demonstrated in the right panel of Fig. 19
where the dynamo growth rate is shown as a function of dynamo numbers
DαS = αrms|S|/(η2Tk3) and DηS = ηrms

xy |S|/(η2Tk2) describing the incoherent
α and shear-current effects. The simulations of Brandenburg et al. (2008a)
typically had DαS ≈ DηS ≈ 4 indicating that the incoherent α effect was
the driver of the dynamo whereas even the incoherent shear-current effect was
subcritical.

7.2 Convective dynamos in local boxes (Class 2)

A step forward from forced turbulence simulations is to consider thermally
driven convection under the influence of rotation and/or shear in Cartesian
geometry; see the left panel of Fig. 20. Inhomogeneous convection with ro-
tation and/or shear leads to kinetic helicity production and an α effect (e.g.
Rädler and Stepanov 2006), and the interaction between shear and turbulent
flows enables the shear dynamo via the Rädler and incoherent dynamo ef-
fects. Furthermore, the magnetorotational instability (Velikhov 1959; Balbus
and Hawley 1991) can also operate given suitable signs of shear and rotation
(e.g. Käpylä et al. 2013a). The mean fields in this type of simulations are one-
(e.g. Käpylä et al. 2008) or two-dimensional (e.g. Hughes and Proctor 2009;
Käpylä et al. 2010a) depending, e.g., on the spatial structure of the imposed
shear flow.

The first successful large-scale dynamos were obtained from local convec-
tion simulations where a large-scale horizontal shear was additionally imposed
(Käpylä et al. 2008; Hughes and Proctor 2009). These setups include all the
ingredients of classical αΩ dynamo similarly to the α-shear dynamos discussed
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Fig. 20 Left: Stream-wise magnetic field component By at the periphery of the simulation
domain in a convection simulation with linear shear and rotation from Käpylä et al. (2008).
Right: Growth rate λ of the magnetic field, normalized by the rotation rateΩ, from Cartesian
DNS (orange dotted line), and one-dimensional mean-field models using the full αij and ηij
tensors (black solid), only the shear-current and Rädler effects (purple dashed), and a pure
α-shear dynamo (red dash-dotted). The turbulent transport coefficients were acquired from
corresponding DNS using the test field method (Käpylä et al. 2009a).

in Sect. 7.1.2. For weak shear the growth rate λ of the large-scale magnetic
field was found to be roughly proportional to the shear rate S in both studies,
similarly to the nonhelical shear dynamo simulations of Yousef et al. (2008b).
In comparison, in a classical αΩ dynamo, albeit with spatially uniform α and
ηt, the growth rate scales as S1/2 (e.g. Brandenburg and Subramanian 2005a).
Another difference to classical αΩ dynamos is that the large-scale fields in this
type of simulations are almost always non-oscillatory (see, however Käpylä
et al. 2013a). In Käpylä et al. (2009a) the turbulent transport coefficients
αij(z) and ηij(z) were computed using the quasi-kinematic test field method
for a set of simulations similar to those in Käpylä et al. (2008). Kinematic
growth rates realized in the DNS were compared to one-dimensional mean-
field models where the test field coefficients from corresponding DNS were
used. The results are shown in the right panel of Fig. 20. The growth rates from
DNS match well with the mean-field models when all of the components of αij

and ηij were retained. These results also suggest that the Rädler/shear-current
effects contribute to the dynamo but that it is subdominant in comparison to
the contribution from the α effect. These simulations were made with modest
ReM of around 35, such that no small-scale dynamo was present. Important
caveats include the omission of incoherent dynamo effects (e.g. Brandenburg
et al. 2008a) and the effects of nonlocality (Käpylä et al. 2009a).

Simulations of rigidly rotating convection without shear flows, which have
all the hallmarks of a classical α2 dynamo, routinely produced dynamos but
most often no appreciable large-scale magnetic fields were reported (e.g. Jones
and Roberts 2000; Cattaneo and Hughes 2006; Hughes and Cattaneo 2008;
Tobias et al. 2008; Käpylä et al. 2008). This happened despite the presence of
an α effect in such simulations (e.g. Brandenburg et al. 1990b; Ossendrijver
et al. 2001, 2002; Käpylä et al. 2006a). The test field calculations of Käpylä
et al. (2009a) showed that the α effect increases and turbulent diffusivity ηt
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Fig. 21 Top and middle panels: α and ηt, respectively, as functions of height from a set
of Cartesian convection simulations from Käpylä et al. (2009b). The Coriolis number is
indicated by the legend in the middle panel. Bottom: Dynamo number Cα corresponding to
the simulations on the upper panels. Gray (orange) shading indicates |Cα| < Ccrit

α (> Ccrit
α ).

The dotted vertical lines indicate the extent of the initially convectively unstable layer.

decreases as a function of rotation. For a one-dimensional z-dependent α2

dynamo, the dynamo number Cα(z) = α(z)/[ηt(z)k1], where k1 = 2π/Lz

and Lz is the vertical size of the system, has to exceed the critical value
Ccrit

α = 1 for dynamo action (e.g. Brandenburg and Subramanian 2005a). This
condition was fulfilled for sufficiently large Co in Käpylä et al. (2009b); see
Fig. 214. This was confirmed by a corresponding dynamo simulations. These
results suggest that mean-field theory has predictive power at least in a limited
sense considered here. However, in Käpylä et al. (2009b) large-scale dynamo
action was obtained only in cases where large-scale hydrodynamic vortices were
excited in the kinematic regime of the simulations. The large-scale vorticity
generation occurs when Co and Re exceed certain threshold values; see e.g.
Chan (2007), Käpylä et al. (2011), and Guervilly et al. (2014). The origin of
the vortices is often attributed to two-dimensionalization of turbulence but the
observed threshold behavior with respect to Reynolds and Coriolis numbers
could also be signs of an instability. Such large-scale vortices aid the dynamo

4 In Käpylä et al. (2009b), cα = α(z)/(ηt(z)kf), where kf = 2π/d, where d is the depth
of the initially convectively unstable layer, was used to characterize the dynamo. With
d = Lz/2 and kf = 2k1, the critical value in terms of cα corresponds to |ccritα | > 0.5.
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in the kinematic regime, whereas once the magnetic fields become dynamically
important, the vortices are quenched (e.g. Käpylä et al. 2013a; Masada and
Sano 2014; Guervilly et al. 2015, 2017; Bushby et al. 2018). The non-linear
state of such dynamos is cyclic; see an example in Fig. 5. There is considerable
uncertainty as to how this dynamo is generated, although an oscillatory α2

dynamo is a possible candidate (e.g. Baryshnikova and Shukurov 1987; Rädler
and Bräuer 1987).

Masada and Sano (2014) made a comparisons of DNS and mean-field mod-
els of this type of systems and found that the mean-field model reproduced the
cyclic behavior of the mean field of the DNS. Magnetic α effect was invoked as
the non-linearity whereas turbulent pumping and diffusivity were assumed to
be catastrophically quenched. However, the mean-field models used isotropic
FOSA expressions for the kinematic α and ηt. Nevertheless, the correspon-
dence of the DNS and mean-field models is remarkably good; see Fig. 22. A
similar analysis was made of simulations with significantly larger density strat-
ification in Masada and Sano (2022), where similar cyclic solutions were found
in an earlier study (Masada and Sano 2016).

Fig. 22 Time-depth diagram of the horizontally averaged horizontal magnetic field compo-
nent Bx(z, t) from a DNS (upper panel) and from a corresponding mean-field model (lower
panel). Adapted from Masada and Sano (2014).

7.3 Global simulations of convection in spherical shells (Class 3)

7.3.1 Interpretation in terms of αΩ dynamos

Early successful dynamos in global geometry by Gilman (1983) and Glatz-
maier (1985) produced cyclic large-scale magnetic fields that migrated pole-
ward. Given that in these simulations ∂Ω/∂r > 0, and ω · u < 0 in the north-
ern hemisphere, poleward propagation of the dynamo wave is consistent with
the Parker-Yoshimura rule (Parker 1955a; Yoshimura 1975). Similar poleward
propagating dynamos have been found in numerous other studies in Boussi-
nesq (e.g. Busse and Simitev 2006), anelastic (e.g. Brown et al. 2011; Gastine
et al. 2012), as well as fully compressible simulations (e.g. Käpylä et al. 2010c;
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Warnecke et al. 2014; Mabuchi et al. 2015), where they have often been in-
terpreted in terms of mean-field αΩ dynamos. In Warnecke (2018) the cycle
frequency was shown to correspond to that obtained from dispersion relation
of the αΩ dynamo

ωcyc =

(
αkθ
2

r cos θ
∂Ω

∂r

)1/2

, (64)

where kθ is a latitudinal wavenumber and α corresponds to the isotropic FOSA
expression (25). In reality, the periods of dynamo cycles are independent of r
and θ and therefore typical values of α and ∂Ω/∂r from the dynamo region
are used in Eq. (64). This relation was found to be consistent with a vari-
ety of simulations with different density stratifications and shell thicknesses in
Gastine et al. (2012); see Fig. 23. Warnecke (2018) studied the dependence of
simulated cycles on rotation. The simulation results were shown to be consis-
tent with Eq. (64) in the cases where clear cycles were present by using simple
estimates of α and ηt from Eq. (29). Furthermore, assuming a quasi-stationary
saturated state of the dynamo, Eq. (63) can be used to estimate the turbulent
diffusivity ηt, which leads to ηt = ∆rR2/(2Pcyc), where ∆r is the depth of
the convection zone and Pcyc = 2π/ωcyc (Roberts and Stix 1972). This was
shown to coincide with FOSA estimate, Eq. (25), and the cycle period was
interpreted to be controlled by the turbulent diffusivity.

Fig. 23 Frequency of the dynamo wave versus a proxy from mean-field αΩ theory. In
comparison to Eq. (64), ro ∝ k−1

y is the outer radius of the shell and Rezon ∝ ∂Ω/∂r is
the Reynolds number related to the mean zonal flow. The symbols refer to different density
stratifications whereas the red (gray) symbols denote thick (thin) shells. Adapted from
Gastine et al. (2012).

As mentioned in Sect. 3 since the pioneering efforts of the 1980s, there have
been several simulations that produce solar-like equatorward migration (e.g.
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Käpylä et al. 2012b; Augustson et al. 2015; Duarte et al. 2016; Strugarek et al.
2017, 2018; Warnecke 2018; Matilsky and Toomre 2020; Käpylä 2022; Brun
et al. 2022). The results of many of these simulations can also be understood
in terms of αΩ dynamos, although with a twist that makes them incompatible
with the solar dynamo. This was shown in Warnecke et al. (2014) who studied
the cause of equatorward migration of dynamo waves in simulations similar
to those presented in Käpylä et al. (2012b) and Käpylä et al. (2013b), again
employing the simple FOSA expressions for α and ηt. The main conclusion
of this study was that the oscillatory solutions can be qualitatively explained
by the Parker-Yoshimura rule and that equatorward migration is due to a
mid-latitude minimum in the angular velocity, that leads to a localized region
where ∂Ω/∂r < 0. An otherwise similar simulation but where the mid-latitude
minimum in the angular velocity is absent shows poleward migration, again
in accordance with the Parker-Yoshimura rule. A similar analysis was made
in Warnecke et al. (2018), but using turbulent transport coefficients computed
using the test field method. Qualitative agreement with the Parker-Yoshimura
rule is found also in this case. A similar local mid-latitude minimum of Ω is
also present in the equatorward migrating solutions in Augustson et al. (2015).

Another mechanism to achieve equatorward migration was introduced in
Duarte et al. (2016) where the sign of the kinetic helicity in much of the con-
vective layer is reversed. This is commonly encountered in the overshoot region
below the convection zone but in the simulations of Duarte et al. (2016) the
reversal extended to much of the convection zone. It is unclear why exactly
the helicity reversal occurs and how robust it is. Duarte et al. (2016) attribute
it to a combination of low Pr, weak stratification in the layer with the rever-
sal, distributed internal heat sources, and fixed flux boundary conditions. The
helicity reversal leads to a negative α effect in the northern hemisphere and
equatorward migration of dynamo waves with a solar-like differential rotation
in accordance with the Parker-Yoshimura rule. However, the simulation setup
in these models significantly differs from the Sun in that much deeper con-
vective shells were studied and in some cases convection transported only a
small fraction of the total flux. Further studies are needed to ascertain if this
mechanism can operate in the Sun.

7.3.2 Magnetic driving of dynamos?

The analyses discussed in the previous section have assumed that the non-
linear evolution of the large-scale dynamos can be represented in terms of the
standard mean-field dynamo theory where the influence of the magnetic field
is taken into account in the turbulent transport coefficients. However, it is also
possible that MHD instabilities that require a finite-amplitude magnetic field
to begin with can drive dynamo action.

For example, Guerrero et al. (2019) analyzed simulations with and without
tachoclines employing the isotropic MTA expressions for α and ηt where the
magnetic contribution to α was retained; see Eq. (29). Their results suggest
that dynamos in their simulations are of α2Ω type with the α effect being
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dominated by the magnetic contribution in the stably stratified regions below
the convection zone. The source of the magnetic α effect in the layers below the
convection zone was conjectured to be the buoyancy (Parker 1955b) or Tayler
instability (Tayler 1973). The former has been shown to lead to an α effect
(e.g. Chatterjee et al. 2011) while the latter has been demonstrated to lead
to dynamos recently (e.g. Petitdemange et al. 2023). Furthermore, Strugarek
et al. (2018) argued that the cycles in their simulations arise from the non-
linear influence the magnetic field exerts on the differential rotation. However,
more refined analyses, e.g., with nonlinear test field methods, are required to
definitively establish the cause of dynamo action in these cases

7.3.3 Relative strength of dynamo effects as function of rotation

Magnetic activity in stars is a strong function of stellar rotation (e.g. Brun and
Browning 2017). Numerical simulations of convection-driven dynamos have
been used to study the rotation-activity relation by several groups (e.g. Vi-
viani et al. 2018; Strugarek et al. 2018; Warnecke 2018; Warnecke and Käpylä
2020; Brun et al. 2022). From the dynamo-theoretical point of view the inter-
est lies in the rotation dependence of various dynamo effects. This was studied
by Warnecke and Käpylä (2020) who computed the turbulent transport coeffi-
cients using the spherical quasi-kinematic test field method from a similar set
of dynamo simulations as in Warnecke (2018). The contributions of individual
mean-fields effects were compared over a large range of Coriolis numbers. This
entails comparing the volume averaged rms values of terms such as ∇×(α·B),
∇× (β · ∇×B), etc., as functions of rotation.

Warnecke and Käpylä (2020) concluded that for slow rotation with strong
anti-solar differential rotation the dominant effects besides the differential
rotation are the α and Rädler effects. In the intermediate rotation regime
where predominantly axisymmetric oscillatory dynamos exist, the α effect
contributes both to poloidal and toroidal fields whereas the Ω effect is also
important for the latter. Thus these dynamos can be classified to be of α2Ω
type. In the rapid rotation regime differential rotation is quenched and the
highly anisotropic α effect dominates, with these dynamos being classified as
α2. Brun et al. (2022) concluded that most of their simulations are more likely
αΩ type based on an SVD analysis of the αij coefficients and the strength of
differential rotation.

7.3.4 Mean-field modeling

The most rigorous test of the turbulent transport coefficients extracted from
simulations is to use them in a mean-field model corresponding to the simula-
tion where they were extracted from. Several levels of rigor how this is done can
be distinguished. In the simplest cases only a fraction of the possible turbulent
transport coefficients are extracted while the rest are either omitted, replaced
by physically plausible parameterized alternatives, or used as free parameters.
Similar arguments apply to the mean flows that go into the mean-field models.
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Here the starting point is in cases with most free parameters followed by more
constrained and rigorous comparisons.

However, a related complementary approach combines local simulations
and global mean-field models (e.g. Käpylä et al. 2006a,b). In Käpylä et al.
(2006a), α and γ were computed using the imposed field method from local
simulations at different latitudes and Coriolis numbers. The latter was inter-
preted to correspond to different depths in the solar convection zone where Co
ranges between 10−4 near the surface to about 10 at the base (e.g. Ossendrijver
2003). The data from 3D simulations was combined to meridional profiles of
αij(r, θ) and γi(r, θ) and used in mean-field dynamo models of the Sun (Käpylä
et al. 2006b). Turbulent diffusivity was assumed to be isotropic and uniform
with a value of the order of 108 m2 s−1. Furthermore, the helioseismic rota-
tion profile of the Sun and a plausible single-cell counterclockwise meridional
flow were used. These models yield solar-like equatorward migration especially
when equatorward pumping γθ and meridional flow were included. The near-
surface shear layer also contributes to this but its effect is subdominant. This
case is rather more illustrative than predictive but this approach shows some
promise in probing turbulent phenomena locally.

One of the first efforts to explain global 3D dynamo simulation with mean-
field models was presented by Dubé and Charbonneau (2013), who extracted
the differential rotation, and α and ηt using FOSA estimates from a suite
of global 3D simulations similar to that of Ghizaru et al. (2010). Meridional
flows in the simulations were weak and therefore assumed to vanish in the
mean-field models. Despite these simplifications, the mean-field models with
these ingredients were able to recover the large-scale magnetic fields of the 3D
simulations remarkably well in some cases. The next step in rigor came with the
study of Racine et al. (2011), who extracted α from the simulation presented
in Ghizaru et al. (2010) using the SVD method; see Sect. 6.2.2. Simard et al.
(2013) used these coefficients to drive a kinematic αΩ, α2, and α2Ω mean-field
dynamo models with the rotation profile from a hydrodynamic simulation and
a generic single cell per hemisphere meridional flow circulation pattern. The
magnetic diffusivity was assumed to be a scalar with uniform value in the
convection zone. The best agreement between the simulation of Ghizaru et al.
(2010) and the mean-field models was obtained when the full α tensor was
included. Despite the differences to the original simulation, remarkably good
correspondence between the simulation and the mean-field model was found;
see Fig. 24.

In a related study, Simard et al. (2016) used the time series encompass-
ing about 40 magnetic cycles from the simulation of Passos and Charbonneau
(2014) to extract the aij and bijk coefficients using the SVD method. Mean-
field modeling applying these coefficients was done by Beaudoin et al. (2016)
with similar simplifications as in Simard et al. (2013). The main motive of
Beaudoin et al. (2016) was to study the origin of seemingly two coexisting
dynamo modes in the simulation of Passos and Charbonneau (2014) that re-
semble the quasi-biennial oscillations observed in the Sun. The mean-field
models indeed suggest two spatially separated dynamos. However, here the
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Fig. 24 Top panels: Mean toroidal field Bϕ(θ, t) at the middle of the convection zone at

r/R = 0.85 and Bϕ(r, t) at latitude θ = 70◦ in an α2Ω mean-field model from Simard
et al. (2013). Bottom panels: corresponding azimuthally averaged magnetic fields from the
3D convective dynamo simulation of Ghizaru et al. (2010).

correspondence between the simulation and the mean-field models was signif-
icantly worse than in Simard et al. (2013). Finally, Simard and Charbonneau
(2020) followed a very similar approach but allowed for a back-reaction of the
magnetic field on the differential rotation via the large-scale Lorentz force,
and found that this leads to long-term modulation of cycles and Maunder
minimum-like events.

The use of isotropic turbulent diffusivity and generic mean flow profiles
in mean-field modeling is problematic because these are integral parts of
the dynamo solutions of 3D simulations. The first studies that took into
account also the tensorial turbulent diffusivity bijk were done with the test
field method by Schrinner et al. (2005, 2007). They computed the turbulent
transport coefficients from Boussinesq magnetoconvection and dynamo sim-
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ulations in spherical shells. The actual and reconstructed EMFs were com-
pared and mean-field dynamo models of the dynamo simulations were made.
The correspondence between the DNS and mean-field models was found to
be satisfactory in cases where convection and dynamos were close to marginal
and time-independent. Clearer differences appeared more supercritical time-
dependent quasi-stationary dynamos. Schrinner et al. (2007) noted that the
ansatz Eq. (21) was not sufficient to reproduce the EMF and that either higher
order terms in the expansion or the effects of non-locality are a possible causes
for this. Schrinner (2011) found that the issues related to poor scale separation
could be alleviated by simultaneous spatial and temporal averaging. Neverthe-
less, although the EMF and the resulting DNS and mean-field solutions differed
in details, the large-scale dynamo mode was correctly captured in all of the
cases (see also Schrinner et al. 2011).

Finally, Warnecke et al. (2021) did mean-field modeling using the turbu-
lence transport coefficients measured with the test field method in Warnecke
et al. (2018) from a density-stratified simulation of rotating convection in
spherical wedge geometry. This simulation was targeted to model stellar dy-
namos and it includes higher density stratification and it is more supercritical
than the earlier models of, for example, Schrinner (2011). In this simulation a
solar-like cyclic large-scale magnetic field arises showing a dominant dynamo
wave that propagates equatorward (poleward) at low (high) latitudes with
a long cycle and a secondary poleward cycle near the equator with a much
shorter cycle; see also Käpylä et al. (2012b, 2016a). Time-averaged turbulent
transport coefficients and mean flows were extracted and post-processed to
remove rapid spatial and temporal variations.

Linear mean-field models were used which is compatible with the fact that
the coefficients were obtained from a simulation where the magnetic field is
already saturated. The mean-field model reproduces large-scale features such
as the cycle period and both the poleward and equatorward migration of the
magnetic field in the direct simulation when the magnitude of α tensor was
scaled up by a factor that varies between 1.40 and 1.525; see Fig. 25. By
systematically turning on and off various effects, Warnecke et al. (2021) con-
cluded that almost all of the turbulent transport coefficients are needed to
reproduce the large-scale magnetic field solution, and that the meridional flow
has a negligible effect of the solutions in these simulations. The authors fur-
ther concluded that the dynamo in the simulation in question is of α2Ω type
and that effects of non-locality are not needed to reproduce the evolution of
the large-scale magnetic field. Remarkably also the short secondary cycle is
reproduced with the mean-field models and conjectured to be of α2 type. This
can have signifigance for the interpretation of stellar cycles where co-existing
long and short cycles have been pointed out by Brandenburg et al. (2017a)
using data from the Mount Wilson Survey.

To conclude, detailed mean-field modeling consistently reproduces the large-
scale dynamo mode of the DNS at least qualitatively. This is despite the fact
that the reconstructed EMF is typically significantly less well reproduced (e.g.
Viviani et al. 2019), such that the amplitudes of the reconstructed and actual
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Fig. 25 Butterfly diagrams of radial (left column) and azimuthal (middle and right
columns) magnetic fields from a global 3D simulation (top row), and a mean-field model
using turbulent transport coefficients from the test field method (lower row). Adapted from
Warnecke et al. (2021).

E can differ by a factor of two. Furthermore, it is puzzling that the stud-
ies that use only some of the coefficients from simulations or which apply an
incomplete ansatz for the electromotive force also tend to often capture the
large-scale field evolution rather well (e.g. Simard et al. 2013). This can mean
that the large-scale dynamo mode established in the simulations is quite insen-
sitive to the choice of the turbulent transport coefficients. None of the studies
discussed above consider non-locality or incoherent dynamo effects that have
been suggested as drivers of dynamos in simpler settings (e.g. Rheinhardt et al.
2014; Brandenburg et al. 2008a).

7.4 Magnetic helicity conservation and saturation of large-scale dynamos

The relation of magnetic helicity conservation to the non-linear saturation of
large-scale dynamos is a topic that has been actively studied using numerical
simulations. The simplest way of testing this is to change the magnetic bound-
ary conditions of the system such that they either allow or prevent the flux of
magnetic helicity across the boundary. Such experiments were conducted by
Käpylä et al. (2010a), with local simulations of convection with shear and rota-
tion. In such cases a shear-mediated magnetic helicity flux has been suggested
to alleviate catastrophic quenching (e.g. Vishniac and Cho 2001). The results
of Käpylä et al. (2010a) show that the dynamos in cases with open and closed
boundaries show dramatically different behavior especially at high values of
ReM. The saturation amplitude of the total magnetic energy is independent of
ReM for open boundaries and proportional to Re−1

M for closed (perfectly con-
ducting) boundaries, the latter coinciding with catastrophic quenching. How-
ever, the mean magnetic field was proportional to Re−0.25

M (Re−1.6
M ) for open

(closed) boundaries and for closed boundaries. Both of these trends are steeper
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than that expected from efficient small-scale magnetic helicity fluxes out of
the system and catastrophic quenching, respectively. The magnetic Reynolds
numbers in this study were still very modest (ReM ≈ 200) compared to as-
trophysically relevant regimes and it is plausible that significantly higher ReM
are needed to reach a regime where asymptotic scaling manifests. A similar
conclusion was drawn earlier from mean-field models applying the dynamical
quenching formalism by Brandenburg et al. (2009) who found that an asymp-
totic regime is reached for ReM of the order of 104.

Hubbard and Brandenburg (2012) distinguished two types of catastrophic
quenching which refer to low saturated field amplitude (Type I) and to slow
saturation in resistive timescale (Type II). Although the magnetic Reynolds
numbers were rather modest, no evidence of Type I quenching was found from
helically forced α2 dynamos. Hubbard and Brandenburg (2012) also concluded
that if shear is present in the system, dynamo-generated large-scale fields are
typically weakly helical, and that such fields can grow to be dynamically signif-
icant already in the kinematic phase of the dynamo without yet being affected
by the magnetic helicity constraint. Furthermore, open boundaries help to
avoid also Type II catastrophic quenching. This was explored in Del Sordo
et al. (2013) with helically forced turbulence simulations where a wind out of
the dynamo region was introduced. The top panel of Fig. 26 shows that the
contribution by the wind to the negative divergence of the magnetic helicity
flux (−∇ · F f) becomes independent of ReM around ReM = 170 and whereas

the resistive losses (−2ηj · b) decrease as Re
−2/3
M . Furthermore, the advective

term reaches the magnitude of the resistive term around ReM = 103 such that
it alleviates otherwise catastrophic quenching.

As discussed in Sect. 4.3, catastrophic quenching can also be alleviated
by internal magnetic helicity fluxes even if the domain is closed (e.g. Mitra
et al. 2010a). High resolution 3D simulations by Rincon (2021) used a setup
where the mean kinetic helicity had a sinusoidal variation with a sign change
at an equator, similar to that expected in the Sun. Rincon (2021) found that
the small-scale magnetic helicity flux overcomes the resistive contribution and
compensates for the transfer term proportional to E ·B at ReM ≳ 103; see the
top panel of Fig. 26. This can be attributed to a flux mediated by turbulent
diffusion. These results corroborate the findings of Brandenburg et al. (2009)
and suggest that non-diffusive internal magnetic helicity fluxes become effec-
tive only near the highest currently numerically achievable ReM in excess of
103. However, even in the cases with the highest ReM the energy of the mean
magnetic field is declining nearly proportional to Re−1

M ; see the bottom panel
of Fig. 26.

7.5 Active region formation via negative effective magnetic pressure

Sunspot formation in flux-transport solar dynamo models is usually attributed
to flux tubes rising from deep layers of the convection zone or from the
tachocline. On the other hand, if the magnetic field of the Sun is generated
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Fig. 26 Top: Terms in the conservation equation of small-scale magnetic helicity with 2E·B,
−2ηj · b, and −∇ · F f corresponding to magnetic helicity production, resistive losses, and
divergence of advective flux due to wind, respectively. Adapted from Del Sordo et al. (2013).
Middle: Rms amplitudes of the terms in the small-scale current helicity evolution equation
as functions of Rm (= ReM) from a set of 3D simulations of a Galloway-Proctor-like helical
flow with sinusoidal variation of kinetic helicity from Rincon (2021). Bottom: Mean magnetic
field energy as a function of ReM from an extended set of runs from the same study.

within the convection zone by a distributed dynamo, and consists of relatively
diffuse fields, another mechanism is needed to form magnetic field concentra-
tions. Numerical studies of sunspots operate on much smaller scales than the
global dynamo and do not typically consider the origin of the magnetic field
but assume an initial condition that leads to spot formation (e.g. Rempel et al.
2009a; Rempel and Cheung 2014; Fang and Fan 2015). In the model of Stein
and Nordlund (2012) a bipolar spot pair forms from flux advected through the
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Fig. 27 Left: Effective magnetic pressure as a function of B/Beq from 3D simulations of
forced turbulence (dotted line) and an analytic profile (solid line). Adapted from Branden-
burg et al. (2010). Right: Magnetic field concentration produced by NEMPI in density-
stratified turbulence. Adapted from Brandenburg et al. (2013b).

lower boundary due to processing by convection, but again the spot-forming
magnetic field was not a produced by a dynamo. A few 3D dynamo simula-
tions have shown buoyantly rising flux tubes but these structures are on much
larger scales than sunspots (e.g. Guerrero and Käpylä 2011; Nelson et al. 2013,
2014).

A possible candidate arises when a large-scale magnetic field is superim-
posed on a turbulent background, leading to negative effective magnetic pres-
sure (e.g. Kleeorin et al. 1989, 1990; Rogachevskii and Kleeorin 2007; Bran-
denburg et al. 2010, 2012a). This effect arises from a mean-field analysis of
the momentum equation involving Reynolds and Maxwell stress tensors. This
is measured by the effective magnetic pressure

Peff = 1
2 (1− qp)β

2, (65)

where β2 = B
2
/B2

eq, and where qp is the contribution of the mean field on
the magnetic pressure. Peff < 0 is a necessary condition for the negative ef-
fective magnetic pressure instability (NEMPI), which causes initially uniform
fields to form flux concentrations. This can be understood such that a large-
scale (mean) magnetic field itself has a positive pressure but it suppresses
turbulence and leads to decreased small-scale (turbulent) pressure. If the lat-
ter effect is larger, corresponding to qp > 1, the effective magnetic pressure is
negative leading to instability. Negative contribution to magnetic pressure and
the related instability have been detected from simulations of forced turbu-
lence given that the scale separation between the scale of the turbulence and
the system size is sufficiently large (e.g. Brandenburg et al. 2011; Kemel et al.
2012; Brandenburg et al. 2013b; Kemel et al. 2013); see Fig. 27. Furthermore,
density stratification is another crucial element for NEMPI. Since the nega-
tive effective pressure effect vanishes for |B| ≳ 0.4Beq, the concentrations it
produces are likely only progenitors of active regions and sunspots and that,
e.g., the buoyancy instability (Parker 1955b, 1975) is still needed to produce
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superequipartition fields as in sunspots. Furthermore, rotation has been shown
to suppress NEMPI (e.g. Losada et al. 2012, 2013, 2019), such that it may only
operate near the surface of the Sun, e.g., in the NSSL.

Convection simulations also show Peff < 0, but no instability has been
detected as of yet (Käpylä et al. 2012a, 2016b). The most likely cause for
this is that the scale separation in convection simulations is much poorer than
in the forced turbulence models where this is an input to the model. This
can also be related to the convective conundrum which is the issue that deep
convection in the Sun appears to behave drastically differently than what
current simulations and theoretical models predict (e.g. Hanasoge et al. 2016;
Hotta et al. 2023, and references therein). Nevertheless, it remains unclear
whether NEMPI is possible in convection.

8 Outstanding issues

8.1 Self-consistent inclusion of large-scale flows

In practically all of the comparisons between 3D simulations and mean-field
models the large-scale flows are assumed to be given, e.g., by the time-averaged
flows from the original DNS. Furthermore, these are often taken from hydrody-
namic runs although the dynamo coefficients are extracted from the magneti-
cally saturated regimes. This is unsatisfactory from a rigorous theoretical point
of view because the large-scale flows themselves are self-consistently generated
in the DNS and affected by the dynamo-generated magnetic fields. Therefore
the mean-field modeling should not only relate to magnetic field generation but
also extended to the mean-field hydrodynamics (e.g. Rüdiger 1989; Rüdiger
and Hollerbach 2004) that govern the large-scale flows. This complicates the
mean-field models considerably because in addition to the EMF, further turbu-
lent correlations including the Reynolds stress and turbulent heat flux need to
be modeled. This is exacerbated by the fact that the Navier-Stokes equations
are inherently non-linear. Some mean-field models take all of these effect into
account either in parametric way (e.g. Brandenburg et al. 1992; Rempel 2006)
or via detailed theoretical expressions (e.g. Pipin 2017; Pipin and Kosovichev
2018). While some efforts have been made to compare hydrodynamic 3D sim-
ulations with mean-field hydrodynamics (e.g. Rieutord et al. 1994; Barekat
et al. 2021), approaches where both, the dynamo and the large-scale flow gen-
eration, would be interpreted in the mean-field framework have yet to appear.
An additional complication is the convective conundrum which hinders cur-
rent 3D simulations from reproducing the solar differential rotation, possibly
hinting at fundamental issues in the theory of stellar convection (e.g. Spruit
1997; Brandenburg 2016; Käpylä 2025). Finally, the NSSL may play a role
in shaping the solar dynamo (e.g. Brandenburg 2005a) as well as in sunspot
formation, but current simulations struggle to incorporate it self-consistently
due to high computational demands deriving from the large gap in spatial and
temporal scales near the surface in comparison to the deep convection zone.



62 Petri J. Käpylä

Thus, the current NSSL-resolving simulations cannot be run long enough for
the large-scale dynamo to grow and saturate (e.g. Hotta 2025) and therefore
the impact of the NSSL on the dynamo in these models is unclear.

8.2 Nonlinearity and non-locality

In a general theory of dynamos, non-linearity due to magnetic fields needs to be
incorporated from the outset. This includes the back-reaction of the magnetic
field on the large-scale flows such as differential rotation as well as the small-
scale flows that ultimately enter E. This is challenging especially in cases
where a small-scale dynamo is excited and changes the dynamics (e.g. Käpylä
et al. 2017a; Hotta et al. 2022). In the comparisons of 3D simulations and
corresponding mean-field models, the large-scale flows are often assumed to be
stationary. However, the large-scale flows are time-dependent especially if the
large-scale dynamo is cyclic (e.g. Käpylä et al. 2016a; Strugarek et al. 2018).
Furthermore, the turbulent transport coefficients are typically computed from
saturated regimes of dynamos with the often implicit assumption that the
measured coefficients are already affected by the magnetic fields. However, such
quenched coefficients are likely specific to the magnetic field configuration in
the simulation from which they were extracted and their use in other settings
is likely problematic.

Another aspect that is particularly important in dynamos driven by con-
vection is non-locality. The turbulent transport coefficients from the test field
method are always scale dependent, even in cases where the scale separation
is assumed at least moderate from the outset (e.g. Brandenburg et al. 2008c,
2012b; Käpylä et al. 2020c). For convection the situation is even worse with
some coefficients changing sign as a function of the spatial scale (e.g. Käpylä
et al. 2009a); see Fig. 14. None of the current comparisons between 3D sim-
ulations and mean-field models take non-locality into account, yet mean-field
models often capture the large-scale fields of simulations remarkably well (e.g.
Warnecke et al. 2021). Even more remarkably, even if the turbulent transport
coefficients in the mean-fields models are estimated using highly idealized ap-
proximations such as FOSA, the large-scale fields of the simulations are never-
theless often recovered (e.g. Dubé and Charbonneau 2013; Masada and Sano
2014). This seems to suggest that the dominant dynamo modes excited in
the simulations are largely insensitive to the details of the mean-field models.
However, rigorous studies of this issue are currently missing.

9 Conclusions and outlook

Significant progress has been made in both the mean-field models and 3D
simulations of astrophysical dynamos in the last two decades or so. Simula-
tions corresponding to classical α2 and αΩ are the most well studied and their
behavior, including aspects of non-linear evolution, are now quite well un-
derstood in the framework of mean-field dynamos including magnetic helicity
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conservation. The situation is significantly less straightforward for spherical
shell dynamos aiming to reproduce solar and stellar dynamos. Comparisons
between such simulations and corresponding mean-field models are still chal-
lenging and often marred with issues in the computation of turbulent transport
coefficients and issues related to non-linearity and non-locality. It is remarkable
that the mean-field models reproduce the simulations results to the degree that
they do despite the various shortcomings in the modeling approaches. How-
ever, in many cases the dynamos in simulations can be interpreted in terms of
relatively simple classical αΩ or α2Ω dynamos.

The main challenge in the interpretations of 3D simulations with mean-
field theory and models continues to be the computation of turbulent trans-
port coefficients. The numerical cost of computing all of the (possibly scale
dependent) coefficients with, e.g., test field methods is high and increases fur-
ther when non-linearity is taken into account. Furthermore, taking all of these
effects into account increases the complexity of the resulting mean-field mod-
els immensely. The increasing complexity works against the main premise of
mean-field modeling that the salient large-scale physics can be represented by
a model with far fewer degrees of freedom than in the original simulation.
While test field methods are likely to be developed further, another possibil-
ity is to use machine learning methods on numerical data that can perhaps
extract the interdependencies in a more compact form in the future.
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trations from turbulent stresses. AN 331:5. https://doi.org/10.1002/asna.200911311.
arXiv:0910.1835 [astro-ph.SR]

Brandenburg A, Kemel K, Kleeorin N, Mitra D, Rogachevskii I (2011) Detection of Negative
Effective Magnetic Pressure Instability in Turbulence Simulations. Astrophys J Lett
740:L50. https://doi.org/10.1088/2041-8205/740/2/L50. arXiv:1109.1270 [astro-ph.SR]

Brandenburg A, Kemel K, Kleeorin N, Rogachevskii I (2012a) The Negative Effective Mag-
netic Pressure in Stratified Forced Turbulence. Astrophys J 749:179. https://doi.org/
10.1088/0004-637X/749/2/179. arXiv:1005.5700 [astro-ph.SR]
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Käpylä MJ, Käpylä PJ, Olspert N, Brandenburg A, Warnecke J, Karak BB, Pelt J (2016a)
Multiple dynamo modes as a mechanism for long-term solar activity variations. Astron
Astrophys 589:A56. https://doi.org/10.1051/0004-6361/201527002. arXiv:1507.05417
[astro-ph.SR]
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Käpylä PJ, Korpi MJ, Brandenburg A (2009b) Large-scale Dynamos in Rigidly Ro-
tating Turbulent Convection. Astrophys J 697:1153–1163. https://doi.org/10.1088/
0004-637X/697/2/1153. arXiv:0812.3958
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Warnecke J (2017b) Extended Subadiabatic Layer in Simulations of Overshooting
Convection. Astrophys J Lett 845:L23. https://doi.org/10.3847/2041-8213/aa83ab.
arXiv:1703.06845 [astro-ph.SR]
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netic Prandtl number from simulations of isotropically forced turbulence. Astron Astro-
phys 636:A93. https://doi.org/10.1051/0004-6361/201935012. arXiv:1901.00787 [astro-
ph.SR]
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Kitchatinov LL, Pipin VV, Rüdiger G (1994) Turbulent viscosity, magnetic diffusivity, and
heat conductivity under the influence of rotation and magnetic field. Astron Nachr
315:157–170

Kleeorin N, Rogachevskii I (2003) Effect of rotation on a developed turbulent stratified
convection: The hydrodynamic helicity, the α effect, and the effective drift velocity.
Phys Rev E 67(2):026321. https://doi.org/10.1103/PhysRevE.67.026321. arXiv:astro-
ph/0209530 [astro-ph]

Kleeorin N, Rogachevskii I (2008) Mean-field dynamo in a turbulence with shear and kinetic
helicity fluctuations. Phys Rev E 77(3):036307. https://doi.org/10.1103/PhysRevE.77.
036307. arXiv:0711.4726 [astro-ph]

Kleeorin N, Rogachevskii I (2012) Growth rate of small-scale dynamo at low magnetic
Prandtl numbers. Phys. Scr 86(1):018404. https://doi.org/10.1088/0031-8949/86/01/
018404. arXiv:1112.3926 [astro-ph.SR]

Kleeorin N, Rogachevskii I (2022) Turbulent magnetic helicity fluxes in solar convective zone.
Mon Not R Astron Soc 515(4):5437–5448. https://doi.org/10.1093/mnras/stac2141.
arXiv:2206.14152 [astro-ph.SR]

Kleeorin N, Moss D, Rogachevskii I, Sokoloff D (2000) Helicity balance and steady-state
strength of the dynamo generated galactic magnetic field. Astron Astrophys 361:L5–L8.
https://doi.org/10.48550/arXiv.astro-ph/0205266. arXiv:astro-ph/0205266 [astro-ph]

Kleeorin NI, Rogachevskii IV, Ruzmaikin AA (1989) Negative Magnetic Pressure as a Trig-
ger of Largescale Magnetic Instability in the Solar Convective Zone. Sov Astron Lett
15:274

Kleeorin NI, Rogachevskii IV, Ruzmaikin AA (1990) Magnetic force reversal and instability
in a plasma with advanced magnetohydrodynamic turbulence. Sov Phys JETP 70:878–
883

Kraichnan RH (1976) Diffusion of passive-scalar and magnetic fields by helical turbulence.
J Fluid Mech 77:753–768. https://doi.org/10.1017/S0022112076002875
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