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ABSTRACT

Context. Late-type stars such as the Sun rotate differentially due to the interaction of turbulent convection and rotation.
Aims. The aim of the study is to investigate the effects of the effective thermal Prandtl number, which is the ratio of kinematic viscosity
to thermal diffusivity, on the transition from anti-solar (slow equator, fast poles) to solar-like (fast equator, slow poles) differential
rotation.
Methods. Three-dimensional hydrodynamic and magnetohydrodynamic simulations in semi-global spherical wedge geometry were
used to model the convection zones of solar-like stars.
Results. The overall convective velocity amplitude increases as the Prandtl number decreases, in accordance with earlier studies. The
transition from anti-solar to solar-like differential rotation is insensitive to the Prandtl number for Prandtl numbers below unity, but
for Prandtl numbers greater than unity, solar-like differential rotation becomes significantly harder to excite. Magnetic fields and more
turbulent regimes with higher fluid and magnetic Reynolds numbers help to achieve solar-like differential rotation in near-transition
cases where anti-solar rotation is found in more laminar simulations. Solar-like differential rotation occurs only in cases with radially
outward turbulent angular momentum transport due to the Reynolds stress at the equator. The dominant contribution to this outward
transport near the equator is due to prograde propagating thermal Rossby waves.
Conclusions. The differential rotation is sensitive to the Prandtl number only for large Prandtl numbers in the parameter regime
explored in this study. Magnetic fields have a greater effect on the differential rotation, although the inferred presence of a small-scale
dynamo did not lead to drastically different results. The dominance of the thermal Rossby waves in the simulations is puzzling because
they are not detected in the Sun. The current simulations are shown to be incompatible with the currently prevailing mean-field theory
of differential rotation.
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1. Introduction

The interplay of turbulent convection with the overall rotation
of the Sun is the primary cause of differential rotation that is
observed at the solar surface and in the interior (e.g., Rüdiger
1989; Miesch & Toomre 2009). Three-dimensional numerical
simulations solving the equations of magnetohydrodynamics
(MHD) capture the essence of this process and routinely pro-
duce solutions that are qualitatively similar to those for the
Sun with equatorial acceleration (e.g., Gilman 1983; Brun et al.
2004; Guerrero et al. 2013; Käpylä et al. 2014). However, it has
become increasingly clear recently that even the most sophisti-
cated current simulations are missing something essential. The
most striking manifestation of this is that simulations using
a nominal solar luminosity and rotation rate often produce
anti-solar (AS) differential rotation with equatorial deceleration
(e.g., Fan & Fang 2014; Käpylä et al. 2014; Hotta et al. 2015),
whereas solar-like (SL) differential rotation is achieved only
with significantly more rapid rotation (e.g., Viviani et al. 2018;
Matilsky et al. 2020).

This is related to the convective conundrum (O’Mara et al.
2016), which is essentially the difference between large-scale
velocity amplitudes in simulations in comparison to the Sun
(e.g., Hanasoge et al. 2012, 2016; Schumacher & Sreenivasan

2020). Until recently, the most common way to ensure SL dif-
ferential rotation in simulations with solar luminosity and rota-
tion rate has been to lower the convective velocities by artifi-
cially enhancing the radiative diffusivity (e.g., Fan & Fang 2014;
Käpylä et al. 2014; Hotta et al. 2016). This cannot be justified
based on physical grounds, however, since convection is thought
to carry practically all of the energy flux through the solar
convection zone (CZ), with the exception of very deep layers.
Another more plausible effect is due to magnetic fields: it is
conceivable that sufficiently strong fields can suppress convec-
tion on large scales to a degree where the differential rotation
flips from AS to SL. Early results with relatively low-resolution
simulations were mixed: Karak et al. (2015) found essentially
no dependence on the magnetic field, while Fan & Fang (2014)
and Simitev et al. (2015) reported more positive outcomes. Nev-
ertheless, the magnetic Reynolds numbers of these simulations
were most probably not high enough to excite a small-scale
dynamo. This was addressed by the recent high-resolution simu-
lations of Hotta & Kusano (2021) and Hotta et al. (2022), which
suggest that SL differential rotation can indeed be achieved with
the help of an efficient small-scale dynamo.

Another important parameter is the Prandtl number, Pr =
ν/χ, where ν is the kinematic viscosity and χ is the ther-
mal diffusivity. The notion that the solar convection zone is
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operating in a regime in which the effective Prandtl number is
large has recently gained popularity (e.g., O’Mara et al. 2016;
Bekki et al. 2017; Karak et al. 2018). While these studies indi-
cate that the overall velocity amplitudes are decreased in these
set-ups, the problem with the differential rotation is even exac-
erbated (Karak et al. 2018). This is because it is not only the
velocity amplitude that is sensitive to Pr, but turbulent trans-
port of angular momentum and heat are also affected (e.g.,
Cattaneo et al. 1991; Käpylä 2021). Furthermore, theoretical
arguments suggest that Pr � 1 in the solar CZ (e.g., Ossendrijver
2003; Schumacher & Sreenivasan 2020).

Prandtl numbers that strongly deviate from unity are chal-
lenging numerically, and therefore most simulations are con-
ducted in the Pr ≈ 1 regime. It is commonly acknowledged
that reaching realistic parameter regimes in terms of, for exam-
ple, Prandtl, Reynolds, and Rayleigh numbers with current or
foreseeable simulations of stellar convection is not feasible (e.g.,
Kupka & Muthsam 2017). The main aim of the present study is
to vary the Prandtl number within the range that can be achieved
with numerical simulations with values above and below unity.
The current study is also inspired by recent results from hydro-
dynamic non-rotating convection in Cartesian geometry (Käpylä
2021), where the convective energy transport and velocity statis-
tics were found to be sensitive to the effective Prandtl number.

2. The model

The simulation set-up is similar to the set-ups used in
Käpylä et al. (2019) and Käpylä et al. (2020). The simulation
domain is a spherical wedge that spans rin < r < R in radius,
where rin = 0.7R and R is the radius of the star, θ0 < θ < π − θ0
in colatitude, where θ0 = π/12, and 0 < φ < π/2 in longitude.
Equations of fully compressible MHD were solved,
∂A
∂t

= U × B − ηµ0 J, (1)

D ln ρ
Dt

= −∇ · U, (2)

DU
Dt

= g − 2Ω0 × U −
1
ρ

(∇p − J × B − ∇ · 2νρS), (3)

T
Ds
Dt

=
1
ρ

[
ηµ0 J2 − ∇ · (Frad + FSGS)

]
+ 2νS2, (4)

where A is the magnetic vector potential, U is the velocity,
B = ∇ × A is the magnetic field, η is the magnetic diffusivity,
µ0 is the permeability of vacuum, J = ∇ × B/µ0 is the current
density, D/Dt = ∂/∂t + U · ∇ is the advective time derivative,
ρ is the density, and g = −∇φ is the acceleration due to gravity,
where φ = −GM/r is a fixed spherically symmetric gravitational
potential, with G and M being the universal gravitational con-
stant and the stellar mass, respectively.Ω0 = (cos θ,− sin θ, 0)Ω0
is the angular velocity vector, where Ω0 is the rotation rate of
the frame of reference, p is the pressure, ν is the kinematic vis-
cosity, T is the temperature, and s is the specific entropy with
Ds = cVD ln p − cPD ln ρ, where cV and cP are the specific heat
capacities in constant volume and pressure, respectively. The gas
is assumed to obey the ideal gas law, p = RρT , whereR = cP−cV
is the gas constant. The rate of strain tensor is given by

Si j =
1
2

(Ui; j + U j;i) −
1
3
δi j∇ · U, (5)

where the semicolons refer to covariant derivatives (Mitra et al.
2009). The radiative flux is given by

Frad = −K∇T, (6)

where K is the heat conductivity. The latter consists of two parts,
K = K1 + K2, where K1 = K1(r) is a fixed function of height and
K2 = K2(ρ,T ) is density- and temperature-dependent according
to Kramers opacity law (Weiss et al. 2004). The profile of K1 is
given by

K1 = Ktop

[
1 + tanh

(
r − R

dK

)]
, (7)

where Ktop = 2cPFbot/|g(R)|, with Fbot = L/4πr2
in where L is the

luminosity of the star, and where dK = 0.015R. The contribution
K2 is given by

K2(ρ,T ) = K0(ρ/ρ0)−(a+1)(T/T0)3−b, (8)

where ρ0 and T0 are reference values of density and temperature,
and the values a = 1 and b = −7/2 correspond to the Kramers
opacity law. This formulation was first used in convection simu-
lations by Brandenburg et al. (2000).

The subgrid scale (SGS) flux is given by

FSGS = −χSGSρ∇s′, (9)

where χSGS is the (constant) SGS diffusion coefficient for the
entropy fluctuation s′(r, θ, φ) = s − 〈s〉θφ, where 〈s〉θφ is the
spherically symmetric part of the specific entropy. The SGS flux
does not contribute to the net radial energy transport because it
is decoupled from the mean stratification, and therefore chang-
ing χSGS does not lead to drastic changes in the boundary layer
thickness near the surface.

The simulations were made using the Pencil Code1
(Brandenburg 2021). The code in this study employs third-order
temporal and sixth-order spatial discretisation. Advective terms
in Eqs. (1)–(4) are written as fifth-order upwinding derivatives
with a sixth-order hyperdiffusive correction, where the diffusion
coefficient is flow-dependent; see Appendix B of Dobler et al.
(2006).

2.1. System parameters and diagnostics quantities

The simulations are defined by the energy flux imposed at the
bottom boundary, Fbot = −(K∂T/∂r)|r=rin , the values of K0, a,
b, ρ0, T0, Ω0, ν, η, χSGS, the profile of K1, and the value of the
modified Stefan-Boltzmann constant σSB in the upper bound-
ary condition σSBT 4

surf = −K∂T/∂r, where Tsurf is the (uncon-
strained) surface temperature. The current models use a sig-
nificantly enhanced luminosity in comparison to real stars to
bring the thermal and dynamical timescales close enough to be
resolved in the simulations. This leads to correspondingly higher
convective velocities, and therefore, the rotation rate is increased
accordingly to capture a similar rotational influence on the flow
in the simulations in comparison to real stars; see Appendix A
of Käpylä et al. (2020).

The non-dimensional luminosity is given by

L =
L0

ρ0(GM)3/2R1/2 , (10)

where ρ0 is the initial density at the base of the convection zone.
The degree of luminosity enhancement is given by the ratio
Lratio = L/L� ≈ 2.1 × 105, where L� is the dimensionless solar
luminosity. The initial stratification is determined by the non-
dimensional pressure scale height at the surface,

ξ0 =
RT1

GM/R
, (11)

where T1 = T (R, t = 0).
1 https://github.com/pencil-code/
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The relative strengths of viscosity, SGS diffusion, and mag-
netic diffusivity are given by the SGS and magnetic Prandtl num-
bers,

PrSGS =
ν

χSGS
, Pm =

ν

η
. (12)

We use Pm = 1 in most of the runs and vary PrSGS between
0.1 and 10. The thermal Prandtl number related to the radiative
conductivity is given by

Pr =
ν

χ
, (13)

where χ = K/cPρ is the radiative diffusivity, which in general
varies as a function of radius, latitude, and time. In the current
simulations, χSGS � χ almost everywhere. The efficiency of
convection is quantified by the Rayleigh number,

Ra =
GM(∆r)4

νχsR2

(
−

1
cP

dshs

dr

)
rs

, (14)

where ∆r = 0.3R is the depth of the layer, shs is the specific
entropy in a one-dimensional non-convecting hydrostatic model,
evaluated near the top of the domain at rs = 0.95R, and where
χs is the total thermal diffusivity K/cPρ from r = rs. The hydro-
static solution is Schwarzschild-unstable only in a thin layer near
the surface (see e.g., Barekat & Brandenburg 2014; Brandenburg
2016) which is why the Rayleigh number is evaluated at rs.
Moreover, χSGS does not contribute to Ra because it only acts
on deviations from the spherically symmetric specific entropy.
Additionally, a turbulent Rayleigh number is quoted,

Rat =
GM(∆r)4

νχtotR2

(
−

1
cP

d〈s〉θφ
dr

)
rs

, (15)

where 〈s〉θφ is the time- and horizontal average of the specific
entropy, and χtot = χSGS + 〈χ〉θφ is the total thermal diffusivity.
Rat is always significantly smaller than Ra because χSGS � χ.

The magnitude of the rotation is controlled by the Taylor
number,

Ta =
4Ω2

0(∆r)4

ν2 . (16)

The fluid and magnetic Reynolds numbers and the Péclet number
are given by

Re =
urms

νk1
, ReM =

urms

ηk1
, Pe =

urms

χSGSk1
, (17)

respectively, where urms =

√
3
2 (U2

r + U2
θ ) is the time- and

volume-averaged rms velocity, where U2
φ has been replaced by

(U2
r +U2

θ )/2 to avoid contributions from differential rotation. The
inverse of the wavenumber k1 = 2π/∆r ≈ 21/R is used to charac-
terize the radial extent of the convection zone. Several definitions
of the Coriolis number that describes the rotational influence on
the flow are discussed in Sect. 3.2.

Mean quantities are denoted by overbars and are defined by
the time- and azimuthal average,

f (r, θ) =
1

∆φ∆t

∫ t0+∆t

t0

∫ ∆φ

0
f (r, θ, φ, t)dφdt, (18)

where t0 and ∆t are the beginning and the length of the statisti-
cally steady part of the simulation, and where ∆φ = π/2 is the

azimuthal extent of the simulation domain. Error estimates were
obtained by dividing the time series into three parts and by com-
puting averages over each one of them. The largest deviation of
these sub-averages from the average over the whole time series
was taken to represent the error.

2.2. Initial and boundary conditions

Initially, the stratification is isentropic with a polytropic index
n = 1.5 and ξ0 = 0.02, resulting in an initial density contrast of
30. The value of K0 is chosen such that Frad = Ftot at the bottom
of the domain.

The radial and latitudinal boundaries are assumed to be
impenetrable and stress-free for the flow. At the bottom bound-
ary, a fixed heat flux is prescribed, while at the top, a black-body
condition is applied. At the latitudinal boundaries, the gradients
of thermodynamic quantities are set to zero; see Käpylä et al.
(2013). For the magnetic field, we apply a radial field condi-
tion at the upper and a perfect conductor condition at the lower
boundary. At the latitudinal boundaries, the field is assumed to
be tangential to the boundary. These conditions are given in
terms of the magnetic vector potential by

Ar = 0,
∂Aθ

∂r
= −

Aθ

r
,

∂Aφ

∂r
= −

Aφ

r
(r = R), (19)

∂Ar

∂r
= Aθ = Aφ = 0 (r = rin), (20)

Ar =
∂Aθ

∂θ
= Aφ = 0 (θ = θ0, π − θ0). (21)

The azimuthal direction is periodic for all quantities. The veloc-
ity and magnetic fields were initialized with random low-
amplitude Gaussian noise fluctuations.

3. Results

Three sets of simulations were run, where PrSGS = 0.1 (set
P01), 1 (P1), and 10 (P10), respectively. The first two sets con-
tain hydrodynamic and MHD runs, and a subset of the MHD
runs was remeshed to higher resolution and to correspondingly
higher Rayleigh, Péclet, and Reynolds numbers; see Table 1.
Only MHD variants of the P10 runs were run.

3.1. Thermal relaxation and convergence

Before discussing the main results, we briefly describe the mea-
sures we undertook to ensure that the simulations are thermally
relaxed and that the results converged. The relevant timescale for
thermal relaxation is the Kelvin-Helmholtz timescale, which is
estimated as

τKH =
Eth

L
, (22)

where Eth =
∫

V EthdV is the total thermal energy of the initial
non-convecting state, with Eth = ρe, and where e = cVT is the
specific internal energy. In general, the runtime of the simula-
tions, ∆t, needs to be of the order of τKH to ensure thermal relax-
ation. A shorter runtime suffices if the initial condition is close
to the final thermally relaxed convecting state. However, this can
typically be concluded only a posteriori.

The normalized Kelvin-Helmholtz timescale in the current
simulations is τ̃KH = τKH/τff ≈ 4.1×103 , where τff =

√
GM/R3

is the free-fall time. By virtue of the enhanced luminosity
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Table 1. Summary of the runs.

Run PrSGS Ta[106] Co Co` Coω Co? Re Pe ReM Rat [106] DR ∆t̃ [103]

P01-1H 0.1 2.6 1.14 1.10 0.59 0.38 36 3.6 – 0.17 AS 12.6
P01-2H 0.1 3.1 1.25 1.15 0.63 0.42 36 3.6 – 0.19 AS 9.05
P01-3H 0.1 3.7 1.34 1.21 0.66 0.46 37 3.7 – 0.21 (AS) 8.66
P01-4H 0.1 4.4 1.42 1.22 0.67 0.50 37 3.7 – 0.23 (AS) 9.78
P01-5H 0.1 5.1 1.50 1.28 0.70 0.54 38 3.8 – 0.25 (SL) 6.58
P01-6H 0.1 5.8 1.65 1.36 0.75 0.58 37 3.7 – 0.27 SL 5.96
P01-1M 0.1 2.6 1.21 1.12 0.62 0.38 34 3.4 34 0.19 AS 7.29
P01-1Mh 0.1 28.8 1.25 0.85 0.50 0.38 109 11 109 2.18 AS 2.98
P01-2M 0.1 3.1 1.29 1.17 0.65 0.42 35 3.5 35 0.20 AS 4.88
P01-2Mh 0.1 34.9 1.33 0.74 0.40 0.42 113 11 113 2.44 (SL) 3.40
P01-3M 0.1 3.7 1.35 1.20 0.66 0.46 36 3.6 36 0.21 AS 6.33
P01-3Mh 0.1 41.5 1.49 0.80 0.43 0.46 110 11 110 2.59 SL 5.72
P01-4M 0.1 4.4 1.48 1.24 0.70 0.50 36 3.6 60 0.24 (SL) 4.46
P01-5M 0.1 5.1 1.59 1.33 0.75 0.54 36 3.6 51 0.26 SL 3.98
P01-6M 0.1 5.8 1.92 1.54 0.84 0.58 32 3.2 53 0.28 SL 3.56
P1-1H 1.0 2.6 1.31 1.00 0.55 0.38 31 31 – 1.45 AS 12.0
P1-2H 1.0 3.1 1.48 1.13 0.61 0.42 30 30 – 1.47 AS 7.44
P1-3H 1.0 3.7 1.63 1.15 0.64 0.46 30 30 – 1.70 AS 12.0
P1-4H 1.0 4.4 1.80 1.21 0.68 0.50 30 30 – 1.84 AS 7.71
P1-5H 1.0 5.1 1.97 1.25 0.73 0.54 29 29 – 2.01 SL 9.45
P1-6H 1.0 5.8 2.14 1.32 0.78 0.58 29 29 – 2.13 SL 9.44
P1-1M 1.0 2.6 1.42 0.98 0.58 0.38 29 29 29 1.59 AS 6.65
P1-2M 1.0 3.1 1.58 1.08 0.63 0.42 28 28 28 1.66 AS 7.18
P1-2Mh 1.0 34.9 1.56 0.68 0.38 0.42 96 96 96 19.9 (SL) 4.41
P1-3M 1.0 3.7 1.72 1.13 0.67 0.46 29 29 29 1.77 AS 5.84
P1-3Mh 1.0 41.5 1.73 0.74 0.41 0.46 94 94 94 20.9 SL 5.46
P1-4M 1.0 4.4 1.87 1.20 0.71 0.50 28 28 28 1.92 SL 5.69
P1-5M 1.0 5.1 2.03 1.26 0.76 0.54 28 28 28 2.03 SL 6.40
P1-6M 1.0 5.8 2.19 1.33 0.80 0.58 28 28 28 2.12 SL 5.90
P10-1M 10 2.6 1.75 0.99 0.58 0.38 23 233 23 13.4 AS 4.53
P10-2M 10 3.1 1.98 1.06 0.64 0.42 23 227 23 14.4 AS 4.36
P10-3M 10 3.7 2.16 1.16 0.70 0.46 23 227 23 15.0 AS 4.41
P10-4M 10 4.4 2.31 1.26 0.74 0.50 23 229 23 15.1 AS 5.90
P10-5M 10 5.1 2.53 1.31 0.80 0.54 23 226 23 16.3 (AS) 4.36
P10-6M 10 5.8 2.68 1.40 0.84 0.58 23 228 23 16.7 (SL) 5.69
P10-7M 10 6.6 2.80 1.46 0.88 0.62 23 234 23 16.9 (AS) 3.50
P10-8M 10 7.5 3.10 1.56 0.95 0.65 22 224 22 17.7 SL 3.53
P10-9M 10 8.4 3.28 1.62 1.00 0.69 22 228 22 18.1 SL 7.03

Notes. Hydrodynamic (MHD) runs are denoted by the suffix H (M). Most of the runs use a grid resolution 128×288×144, the exception being runs
denoted by the suffix h, where resolution 256×576×288 was used. The Rayleigh number in most runs is 7.0×108, expect in the higher-resolution
runs, denoted by suffix h, where it is Ra = 2.4 × 109. Co, Co`, Coω, and Co? denote the definitions of the Coriolis number given by Eqs. (25),
(27), (28), and (30). PrM = 1 in all runs except in P01-4M and P01-6M where PrM = 1.67, and in P01-5M where PrM = 1.43 to obtain growing
dynamos. The penultimate column denotes the type of differential rotation with parenthesis indicating that the result is not statistically significant.
The last column denotes the length of the time averages in units of 103τff .

method used here (see e.g., Käpylä et al. 2020), τKH can be
resolved in the simulations; see the 13th column of Table 1.
In the hydrodynamical simulations, the initial transient, data
from which is not used in the time-averaging, is typically of
the order of τKH; see Fig. 1a for data from run P1-6H. Hydro-
dynamic simulations were considered thermally relaxed when
the volume-averaged (denoted by angle brackets) total energy
density 〈Etot〉 reaches a statistically steady state, where 〈Etot〉 =
〈Eth〉+ 〈Epot〉+ 〈Ekin〉+ 〈Emag〉 with Epot = ρφ, Ekin = 1

2ρU2, and
Emag = 1

2µ
−1
0 B2. The flows often reach a statistically steady state

already significantly earlier; see the inset of Fig. 1a for represen-
tative results for the time evolution of the rms value of Uφ from
run P1-6H.

The MHD simulations were typically started from ther-
mally relaxed hydrodynamic cases. In these cases, the tran-
sient due to thermal relaxation is significantly shorter than
in the hydrodynamic progenitor run. However, the growth of
the magnetic field is slow at the modest magnetic Reynolds
numbers presented here. Therefore, another two-phase tran-
sient follows, in which the magnetic field first grows from a
weak seed field to become dynamically important, which is fol-
lowed by a period in which the thermal state relaxes toward
a new statistically steady MHD state; see Fig. 1b. Again, the
criterion for convergence is taken to be that the sum of the
volume-averaged total energy density 〈Etot〉 settles to a new sta-
tistically steady state. In some cases, such as in run P1-6M
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Fig. 1. Time series of total energy density and the rms velocity and mag-
netic fields. (a) Volume-averaged total energy density 〈Etot〉 normalized
by its value at t = 0 from run P1-6H. The inset shows the volume-
averaged rms value of the azimuthal flow Ũ rms

φ = U rms
φ /
√

GM/R. The
red (blue) part of the curve indicates the transient (statistically station-
ary) part of the time series, where t̃0 = t0/τff indicates the starting time
for the time averaging. τKH indicates the Kelvin-Helmholtz timescale.
(b) Same as above, but for the corresponding MHD run P1-6M. The
inset shows B̃rms

φ = Brms
φ /(ρ0µ0

√
GM/R) in addition to Ũ rms

φ . The black
(green) parts of the data for B̃rms

φ indicate transient (statistically station-
ary) parts. (c) Same as panel a, but for run P01-3H.

shown in Fig. 1b, the total energy density in the MHD state
still shows temporal modulation due to quasi-cyclic large-scale
magnetism.

However, in a few of hydrodynamic cases (runs P01-2H,
P01-3H, and P01-4H), a statistically stationary state was not
reached, even though these models were run several Kelvin-
Helmholtz times; see Fig. 1c. These runs exhibit excursions
between different flow states where the mean azimuthal flow

also shows sign changes, leading to a large uncertainty in the
estimates of differential rotation. The most probable explana-
tion for this behaviour is that these models lie in a bistable
parameter regime in which different differential rotation profiles,
including AS and SL states, are possible, depending on the his-
tory of the run (Gastine et al. 2014; Käpylä et al. 2014). Whether
these models finally settle to one or the other stable solution is
unclear and would possibly require significantly longer integra-
tion times. None of the corresponding MHD runs exhibits simi-
lar excursions, thus being consistent with the absence of hystere-
sis in the MHD regime (Karak et al. 2015).

3.2. Differential rotation and meridional circulation

The main focus of the current study is to explore the effects of the
Prandtl number for the large-scale flows that develop in rotating
convective systems. The mean rotation profile is given by the
time and azimuthal average,

Ω(r, θ) = Ω0 +
Uφ(r, θ)
r sin θ

, (23)

and the meridional flow is given by Umer = (Ur,U t, 0). In many
simulations, the latitudinal profiles of Ω are non-monotonic such
that the rotation rate has a polar jet, a maximum at mid-latitudes,
or sometimes several local minima and maxima as a function of
latitude. Furthermore, equatorial asymmetries can occur, render-
ing the amplitude of the latitudinal shear an unreliable diagnos-
tic of the overall sense of differential rotation; see representative
examples in Figs. 2–4. Therefore the classification of the AS and
SL rotation profile is here based on the mean rotation profile at
the equator

〈∆Ω̃eq〉 =

∫ R
rin

r2[Ω̃(r, θeq) − 1]dr∫ R
rin

r2dr
, (24)

where θeq = π/2, and where the tildes refer to normalization by
the rotation rate of the frame of reference, Ω0. If 〈∆Ω̃eq〉 > 0
(〈∆Ω̃eq〉 < 0), the run is classified as SL (AS) rotator. This mea-
sure turns out to be a monotonic function of rotation and is fur-
thermore much less affected by equatorial asymmetries or polar
jets. See Camisassa & Featherstone (2022) for a more granular
classification making use of more diagnostics to describe the
transition.

The current results indicate that the convective velocity
increases when the Prandtl number is decreased. This is mani-
fest when the fluid Reynolds number increases for a decreasing
SGS Prandtl number; see the eighth column of Table 1. Naively,
it might then be expected that achieving SL differential rotation
for low PrSGS would be more difficult, that is, require faster rota-
tion. The rotational influence on the flow is often quantified by a
simple definition of the Coriolis number,

Co =
2 Ω0

urmsk1
, (25)

where the convective length scale is assumed to be unchanged by
rotation. When this definition is used to characterize the results,
the Coriolis number at which the rotation profile flips from AS
to SL decreases monotonically with PrSGS; see Fig. 5a where
〈∆Ω̃eq〉 is shown for all runs as a function of Co. That is, in the
low-resolution MHD runs with PrSGS = 0.1 (1), the transition
occurs around Co ≈ 1.5 (Co ≈ 1.8); see Figs. 2 and 3, whereas
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Fig. 2. Time-averaged rotation profiles from MHD runs P01-[2-5]M near the AS-SL transition with PrSGS = 0.1 with the rotation rate increasing
from left to right. Coriolis numbers according to Eqs. (25) and (28) and the mean differential rotation at the equator 〈∆Ω̃eq〉 according to Eq. (24)
are indicated in each panel. The white arrows indicate the meridional flow.

Fig. 3. Same as Fig. 2 but for runs P1-[2-5]M in set P1.

for PrSGS = 10 the transition occurs at an even higher Coriolis
number (Co ≈ 3); see Fig. 4.

However, the validity of this simplistic definition of the
Coriolis number in characterizing the simulations can be ques-
tioned based on its very crude estimate of the convective length
scale and velocity amplitude. For example, Gastine et al. (2014)
argued that a local Rossby (inverse Coriolis) number based on
the length scale from the mean spherical harmonic degree `u of

the m , 0 poloidal flows gives a more accurate estimate (see
also Schrinner et al. 2012). Furthermore, they showed that the
scatter near the AS-SL transition is reduced with this definition,
essentially reducing the apparent dependence on Prandtl number
significantly. Here this was tested by computing `u according to

`u =
∑
`

`
〈U`

p · U
`
p〉

〈Up · Up〉
, (26)
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Fig. 4. Same as Fig. 2 but for runs P10-[6-9]M in set P10.

where Up is the non-axisymmetric poloidal flow, and where `
is the spherical harmonic degree. Data from a varying number
of horizontal slices from near the base, at the middle, and near
the top of the CZ were analyzed for each run, and the result-
ing `u is an average over the depths and time. The number of
time slices per run varies between 7 and roughly 60. The corre-
sponding length scale is du = π∆R/`u, and the Coriolis number
based on this is given by

Co` =
2Ω0du

urms
, (27)

where urms is defined in the same way as in Eq. (17). The num-
bers in Table 1, fifth column, indicate that the value of Co` is
sensitive to the Reynolds number such that in the runs with
the highest Re, the values of Co` are roughly 30% lower than
those of the low-resolution runs. Similarly, a Coriolis number
based on fluctuating vorticity can be defined as (e.g., Brun et al.
2022)

Coω = 2Ω0/ω
′
rms, (28)

where ω′ = ∇ × u with u = U − U. This quantity shows a
similar sensitivity to the fluid Reynolds number as Co`; see the
sixth column of Table 1. Both of these definitions pick up smaller
length scales at the highest Reynolds number runs, resulting in
lower Coriolis numbers. This is likely an indication that the sim-
ulations are still far away from an asymptotic regime in which
the results would be independent of the diffusivities. Neverthe-
less, Co` and Coω characterize the rotational influence on the
flow more accurately than Co by being sensitive to the actual
dominant length scale. However, due to the Reynolds number
sensitivity, we should only compare results from runs with com-
parable Re when these definitions are used to characterize the
results.

The average radial differential rotation at the equator is
shown as functions of Co` and Coω in Figs. 5b and c, respec-
tively. When the five runs at higher Reynolds and Péclet num-
bers are ignored for the time being, these results suggest that

the dependence of the differential rotation transition as a func-
tion of the Prandtl number all but vanishes for PrSGS < 1. How-
ever, in both cases, the transition for PrSGS = 10 still occurs at
a higher Co` and Coω than for the PrSGS = 0.1 and 1 cases2.
These results agree with those reported by Karak et al. (2018),
who also found that a Prandtl number above unity promotes AS
differential rotation due to enhanced downward angular momen-
tum transport. Both definitions give much lower Coriolis num-
bers for the higher-Re runs because smaller convective scales
are resolved and `u and ω′ pick these up. Furthermore, among
the five higher-Re runs, the single AS model (P01-1Mh) appears
to have a marginally larger Coriolis number than the SL coun-
terparts in both cases, although the error estimates for Co` and
Coω are large in both cases. Whether this is a real effect or due to
insufficient statistics remains open at this point. As a side note,
the resemblance of Figs. 5b and c, or alternatively, the correla-
tion between Coω and Co`, suggests that Coω captures the rota-
tion dependence of the convective length scale almost as well as
Co` without having to perform numerically expensive spherical
harmonic decomposition.

Each of the definitions of the Coriolis number discussed so
far rely on diagnostic quantities such as urms, `u, and ω′, that are
sensitive to other details, such as the fluid Reynolds number, of
the system. Yet another alternative is to define a Coriolis number
that depends only on stellar input parameters such as the lumi-
nosity, mass, and rotation rate of the modeled star. This can be
constructed by assuming that

L = ρ?u3
?R2, (29)

where L = 4πr2
inFbot is the luminosity, ρ? is a reference den-

sity, and u? is an estimate of an average convective velocity. We

2 Only the two most rapidly rotating runs with PrSGS = 10 have statisti-
cally significant SL differential rotation; see the 12th column of Table 1.
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Fig. 5. Normalized average angular velocity at the equator 〈∆Ω̃eq〉 for all runs as a function of Co (a), Co` (b), Coω (c), and Co? (d). Circles
(crosses) denote MHD (hydrodynamic) runs, and the colour of the symbols indicates the SGS Prandtl number. The sizes of the symbols are
proportional to ReM (Re) for MHD (hydrodynamic) runs.

assume ρ? = ρ0
3 and construct a stellar Coriolis number

Co? =
2Ω0R

u?
=

2Ω0R5/3ρ1/3
0

L1/3 . (30)

While this definition is imperfect in the sense that the actual con-
vective flow speed or scale do not enter, it is useful to determine
whether a model with a given rotation rate and luminosity is an
AS or SL rotator. This makes particularly sense in the homo-
geneous set of simulations considered here, where the stellar
mass, luminosity, and radius are all fixed. The results are shown
in Fig. 5d. It is apparent that the runs with PrSGS = 10 require
a significantly higher Co?, corresponding here to higher Ω0, to
achieve SL differential rotation. However, the AS-SL transition
occurs at the same Co? for PrSGS = 1 and 0.1. Notably, the MHD
runs at PrSGS = 0.1 and 1 for Co? = 0.50 are at least marginally
SL in comparison to the corresponding AS hydrodynamic cases.
Similarly, the higher-resolution runs are SL or marginally SL for
Co? = 0.46, whereas the corresponding lower-resolution MHD
and hydrodynamic runs are all AS. The current higher-resolution
runs with ReM ≈ 94 . . . 113 also have small-scale dynamos,
which was tested with separate runs where the axisymmetric
(m = 0) magnetic fields were suppressed. Therefore, it is plau-
sible that the main contribution to the earlier appearance of SL
differential rotation in these cases is due to the growing impor-
tance of the magnetic fields. However, no corresponding higher-
resolution hydrodynamic runs were made to confirm this. The

3 Using the average density of the star, ρav = M/ 4
3πR3, is another

option, and in that case, the definition of Co? is fully determined by
the stellar parameters.

current results agree with the results of Hotta & Kusano (2021)
and Hotta et al. (2022), who argue in favour of the magnetic field
being the decisive factor in the transition. Finally, when the sim-
ulations are scaled to physical units as in Käpylä et al. (2020),
the lowest value in the present study, Co? = 0.38, corresponds
to the case of solar rotation rate at solar luminosity.

The conclusion of comparing the results characterized in
terms of the four variants of the Coriolis number is that SL
differential rotation is substantially more difficult to obtain for
PrSGS = 10 than for PrSGS = 1 and 0.1, whereas in the latter
two cases, there is no clear difference. Furthermore, the use of
the simplistic Coriolis number, Eq. (25), gives misleading results
and should be avoided. In contrast to the SGS Prandtl number,
the dependence on magnetic fields is clearer, such that in MHD
runs, SL differential rotation is easier to excite.

3.3. Angular momentum transport

The angular momentum in the interior of the star is governed by
the conservation equation
∂

∂t
(ρL) + ∇ · T = 0, (31)

where L = $2Ω is the specific angular momentum, with $ =
r sin θ being the lever arm, and where

T = $[ρuuφ + ρU(Uφ +$Ω0)

− (bbφ + B Bφ)/µ0 − 2νρS · φ̂], (32)

is the flux of angular momentum, where u = U−U and b = B−B
are the fluctuating velocity and magnetic field, and where φ̂ is the
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Fig. 6. Total angular momentum flux T (arrows) superimposed on the
mean angular velocity profile (colour contours) from runs P1-2M and
P1-4M.

unit vector in the azimuthal direction. The internal angular veloc-
ity profile is thus determined by the spatial distribution of the
angular momentum fluxes. The main transporters are due to the
Reynolds and Maxwell stress due to fluctuating and mean flows
and fields (see Rüdiger 1989; Rüdiger & Hollerbach 2004),

T
u = $Q

u
= $ρuuφ, (33)

T
b = $M

b
= −$bbφ/µ0, (34)

T
U = $Q

U
= $ρU(Uφ +$Ω0), (35)

T
B = $M

B
= −$B Bφ/µ0. (36)

Additionally, the contributions to the stress due to molecular vis-
cosity are given by

T
ν = $Q

ν
= −2$νρS · φ̂. (37)

Although the viscous flux is negligibly small in the Sun, it is typ-
ically non-negligible in simulations (e.g., Guerrero et al. 2022).

Representative results of T are shown in Fig. 6 superim-
posed on top of the angular velocity in runs P1-2M and P1-4M.
The total angular momentum flux closely follows the pattern of
the meridional circulation; see also Fig. 3. To see which terms
dominate the angular momentum transport, we proceed to com-
pute the divergences of the various terms that are encapsulated
in T . Figure 7 show the divergences of the various contribu-
tions to the angular momentum flux given by Eqs. (33)–(37) for
runs P1-2M and P1-4M. The contributions due to the turbulent
Reynolds stress Q

u
and due to the meridional flow Q

U
are by far

the largest and approximately balance out in all of the cases con-
sidered here. The viscous and Maxwell stress contributions are
clearly subdominant. The former (latter) decreases (increases) in

the higher-resolution runs, but M
b

remains subdominant in these
cases as well. The rightmost panels of Fig. 7 show the residual
divergence ∇ · T , which has relatively high peak values, but pri-
marily on small scales.

Because the divergence of the stress is very similar in the
AS and SL cases, the difference in the angular momentum trans-
port between these cases is rather subtle. Furthermore, the stress
from meridional circulation is radially outward near the equator
in both AS and SL cases; see for example Fig. 3, and the viscous
and magnetic contributions are weak in all of the current runs.
Therefore the most plausible explanation is a change in the tur-
bulent Reynolds stress T u, which is shown in Fig. 8 for runs P1-
2M and P1-4M superimposed on the mean angular velocity. The
turbulent Reynolds stress is nearly radially downward at high
latitudes in the bulk of the CZ. The region of downward radial
flux is roughly confined inside the tangent cylinder in all cases.
Outside the tangent cylinder and near the surface at all latitudes,
T

u is directed predominantly equatorward regardless of whether
the rotation profile is AS or SL. Outside the tangent cylinder,
the angular momentum transport is increasingly axial, although
the radial flux at the equator remains non-zero in all cases. The
sense of the differential rotation is related to the sign of the radial
component of T u at the equator: for positive (outward) T u, the
differential rotation is SL (run P1-4M in Fig. 8), whereas it is AS
for negative (downward) T u (run P1-2M). Therefore, it appears
sufficient to study the equatorial radial angular momentum flux
to determine the difference between AS and SL differential rota-
tion.

To study the equatorial Reynolds stress in more detail, a
number of slices of the m , 0 velocity field U(r, θeq, φ) were
analyzed. Azimuthal Fourier filtering was applied to produce fil-
tered velocity fields Uf(m′1,m

′
2), where azimuthal orders ranging

between m′1 and m′2 were retained4. These flows are used to com-
pute the radial Reynolds stress,

Q
u
rφ(m′1,m

′
2) =

1
∆φ∆t

∫ t0+∆t

t0

∫ ∆φ

0
ρUf

r(m′1,m
′
2)Uf

φ(m′1,m
′
2)dφdt.

(38)

Here the density fluctuations are assumed to be small, and no
filtering was applied to ρ. Representative results are shown in
Fig. 9. In the AS case P1-2M, Fig. 9a, the total Reynolds stress
is negative everywhere except at the base of the CZ. Contribu-
tions from the largest scale (m′1,m

′
2 = 1, 2) non-axisymmetric

motions are statistically almost identical with the total stress. A
weak positive contribution around the middle of the CZ is vis-
ible for (m′1,m

′
2 = 3, 5), but the Reynolds stress for (m′1,m

′
2 =

1, 5) is again very similar to the total stress. In the SL runs,
the largest scales (m′1,m

′
2 = 1, 2) also contribute to a down-

ward flux, whereas the main contribution to the net outward
flux comes from (m′1,m

′
2 = 3, 5); see Fig. 9b for run P1-4M.

Similarly to the AS case, the contributions from m′ > 5 are
small. This indicates that practically all of the Reynolds stress
at the equator is due to relatively large-scale structures that can
be identified as Busse columns (Busse 1970a,b), which are also
often referred to as banana cells. Such features are often promi-
nently visible in snapshots of the velocity field; see Fig. 10 for a
representative example. The Busse cells are manifestations of
non-linear prograde-propagating thermal Rossby waves. It
is therefore somewhat questionable to talk about turbulent
Reynolds stress in this context since the Busse columns are
essentially large-scale convective modes.
4 Due to the ∆φ = π/2 azimuthal extent of the simulation domain, m′
corresponds to 4m in a full sphere.
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Fig. 7. Divergences of the different contributions to the angular momentum flux, Eqs. (33)–(37), from runs P1-2M (top row) and P1-4M (bottom).
The rightmost panels show the divergence of the total stress, and the tildes refer to normalization by ρ0GM.

Fig. 8. Same as Fig. 6 but showing the turbulent Reynolds stress T u.

The mechanism by which the differential rotation is gener-
ated in the current simulations is therefore different from that in
Hotta et al. (2022), where the small-scale Maxwell stress is the
dominant contribution to the radial angular momentum trans-

port. While the high-resolution runs in the present study have
small-scale dynamos and show an increased tendency for SL dif-
ferential rotation, the Reynolds stress due to the thermal Rossby
waves is still the dominant contribution to the angular momen-
tum flux in all of the runs considered here. In an earlier study
(Käpylä et al. 2017), the Maxwell stresses were found to be com-
parable to the Reynolds stress at the highest magnetic Reynolds
numbers, but in that study, the magnetic Prandtl number was
higher (PrM = 5), and the modelled stars typically rotated three
to four times faster than in the current study. Although the
Maxwell stress dominates the angular momentum transport in
the simulations of Hotta et al. (2022), large-scale Busse columns
can still be seen in the deep parts of their model; see for example
their Fig. 6. If such large-scale convective patters were as promi-
nent in the Sun, they should have been detected by helioseismol-
ogy, but there is currently no evidence to this effect. Therefore,
it seems that although highly magnetized simulations are more
solar-like in terms of the rotation profile, the conundrum with the
too prominent large-scale structures remains.

Furthermore, in hydrodynamic mean-field theories of differ-
ential rotation (e.g., Rüdiger 1989; Kitchatinov & Rüdiger 2005;
Rogachevskii & Kleeorin 2015), the turbulence models are nec-
essarily simplified, and large-scale convection modes such as
Busse columns do not appear. In the most commonly adopted
approach of Kitchatinov & Rüdiger (2005), the radial angular
momentum transport at the equator is downward for slow rota-
tion and vanishes for rapid rotation. The SL differential rotation
results from a strong equatorward transport. Numerical simu-
lations of isothermal homogeneous anisotropic turbulence also
produce downward (slow rotation) or vanishing (rapid rotation)
radial angular momentum flux at the equator (Käpylä 2019a)
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Fig. 9. Fourier-filtered and total Reynolds stress component Q̃
u

rφ from
runs P1-2M (a) and P1-4M (b) as indicated in the legend. The shaded
areas indicate error estimates according to the definition in Sect. 2.1.

in qualitative accordance with Kitchatinov & Rüdiger (2005).
Hydrodynamic mean-fields models based on these concepts
do not typically produce AS solutions unless strong magnetic
fields are present (Kitchatinov & Rüdiger 2004), although more
recently, a hydrodynamic mechanism has also been discussed
(Rüdiger et al. 2019). This latter process relies on poleward hor-
izontal angular momentum flux at slow rotation, which was also
found from local simulations, but which appears to be absent in
global models such as those presented here. The mean-field the-
ories avoid the problem of too prominent thermal Rossby waves
by simply neglecting them, whereas they fail to characterize both
AS and SL cases in the current simulations. This difference is
yet another facet of the convective conundrum, the resolution of
which is likely to require further critical assessment of both the-
oretical and simulation approaches.

4. Conclusions

The transition from AS to SL differential rotation was studied as
a function of the SGS Prandtl number (PrSGS). Four definitions
of the Coriolis number were used to quantify the exact point of
transition from simulations where the rotation of the star was
varied. While this transition occurs at a higher Coriolis num-
ber for PrSGS = 10 than for PrSGS = 1 and 0.1, no statistically
relevant difference was found between the last two cases. This
suggests that the Prandtl number dependence of the AS-SL tran-
sition is weak for PrSGS < 1, whereas a high Prandtl number
makes it significantly more difficult to achieve SL differential
rotation.

Fig. 10. Instantaneous normalized radial Reynolds stress component

Q̃
u

rφ on the equatorial plane from run P01-6M (colour contours). The
m , 0 flows are indicated by the arrows, the width of which is propor-
tional to the local flow amplitude.

These results are puzzling because earlier non-rotating local
simulations (Käpylä 2021) suggested that the cases Pr = 1
and Pr = 0.1 also differ significantly in many respects. A
notable difference to the study of Käpylä (2021) is that the
current simulations do not include a radiative layer below the
CZ. This can explain why no subadiabatic layers develop at
the base of the CZs in the current simulations: the effects of
overshooting are absent. The latter was found to be particu-
larly sensitive to the Prandtl number in the local simulations
Käpylä (2019b) and Käpylä (2021). The inclusion of a radia-
tive layer has also consequences for the dynamo solutions (e.g.,
Guerrero & Smolarkiewicz 2016; Käpylä 2022), which also cou-
ple back to differential rotation. Furthermore, rotation was not
taken into account in the earlier Cartesian studies. These aspects
need to be revisited in future studies.

Many of the current simulations also included magnetic
fields, but often in a parameter regime in which the small-
scale dynamo is not excited. Thus the influence of magnetic
fields is relatively weak in most of the current runs. Neverthe-
less, the magnetic fields make it easier to excite SL differential
rotation especially in the current higher-resolution runs, which
likely also have small-scale dynamos. However, the effects of
magnetic fields are likely to be more significant in higher ReM
systems, as shown in the recent results of Hotta et al. (2022).
Therefore, magnetism appears to be the most promising candi-
date to explain the discrepancy between solar observations and
global simulations. Nevertheless, the non-detection of thermal
Rossby waves from the Sun, which remain prominent in all
current simulations, still raises questions about the generation
mechanism of solar differential rotation. Finally, the difference
between mean-field theories of differential rotation and 3D sim-
ulation results is pointed out as another aspect that requires fur-
ther scrutiny in the future.
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