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Abstract

Magnetohydrodynamic star-in-a-box simulations of convection and dynamos in a solar-like star with different
rotation rates are presented. These simulations produce solar-like differential rotation with a fast equator and slow
poles and magnetic activity that resembles that of the Sun with equatorward migrating activity at the surface.
Furthermore, the ratio of rotation to cycle period is almost constant, as the rotation period decreases in the limited
sample considered here. This is reminiscent of the suggested inactive branch of stars from observations and differs
from most earlier simulation results from spherical shell models. While the exact excitation mechanism of the
dynamos in the current simulations is not yet clear, it is shown that it is plausible that the greater freedom that the
magnetic field has due to the inclusion of the radiative core and regions exterior to the star are important in shaping

the dynamo.

Unified Astronomy Thesaurus concepts: Stellar magnetic fields (1610); Magnetohydrodynamical simulations

(1966); Astrophysical fluid dynamics (101)

Supporting material: animation

1. Introduction

The Sun maintains a global dynamo with a magnetic cycle of
approximately 22 yr, with activity appearing at the surface at
midlatitudes and propagating equatorward as the cycle
progresses (e.g., Hathaway 2010). Three-dimensional magneto-
hydrodynamic simulations struggle to reproduce such cycles;
often, the activity propagates poleward (e.g., Brown et al. 2011;
Nelson et al. 2013), active latitudes do not coincide with those
in the Sun (e.g., Ghizaru et al. 2010), or there is a mismatch
between the simulated and solar cycle periods (e.g., Kipyld
et al. 2012; Warnecke 2018). Furthermore, the simulations
usually require substantially faster rotation than in the Sun to
achieve cyclic dynamos (e.g., Viviani et al. 2018). Another
issue arises when simulations at different rotation rates are
confronted with observations; cycles observed from stars other
than the Sun suggest that in the vicinity of the solar Rossby
number, which is the ratio of the rotation period to convective
turnover time, the ratio of rotation to cycle period increases as
the Rossby number decreases (e.g., Olspert et al. 2018).
Simulations often produce the opposite trend (e.g., Strugarek
et al. 2018; Warnecke 2018). Typically, more than one of these
defects is found in any given simulation.

There are several possible reasons for the mismatch between
simulations and reality. A major factor in this is likely to be the
inability of current simulations to capture stellar convective
flows accurately enough. This is known as the convective
conundrum and manifested by too-high large-scale velocity
amplitudes in simulations in comparison to the Sun (e.g.,
Hanasoge et al. 2012; O’Mara et al. 2016; Schumacher &
Sreenivasan 2020). This often leads to antisolar differential
rotation in simulations with solar luminosity and rotation rate
(e.g., Kidpylid et al. 2014), and very high resolutions, in addition
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to highly supercritical dynamos, are likely needed to overcome
this (Hotta & Kusano 2021).

Another factor is that stellar dynamo simulations are often
done in spherical shells where only the convection zone (CZ)
or, additionally, a part of the radiative core is modeled (e.g.,
Guerrero et al. 2019; Bice & Toomre 2020). This necessitates
the use of boundary conditions that may not always be
appropriate and can affect the dynamo solutions in ways that
are a priori not obvious (e.g., Cole et al. 2016). In the present
study, a star-in-a-box model, where a spherical star is
embedded into a Cartesian cube, is used to model a solar-like
star in a rotational regime where cyclic solutions are excited.
The model thus includes the radiative core and regions exterior
to the star. The former enables contributions to the dynamo
from the interface between the radiative and convective zones,
whereas the latter is usually not considered to be important in
the maintenance of the dynamo. However, including the
exterior is less restrictive than imposing mathematically or
numerically convenient boundary conditions at the surface that
can also affect the resulting dynamos (e.g., Warnecke et al.
2016).

2. Model

The star-in-a-box model described in Képyld (2021) is used;
see also Dobler et al. (2006). A star of radius R is embedded
into a Cartesian cube with side length H = 2.2R. The governing
equations are
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where A is the magnetic vector potential, U is the velocity,
B =YV x A is the magnetic field, J =V x B/ is the current
density, pg is the permeability of vacuum, 7 is the magnetic
diffusivity, D/Dt = 0/0t+ U- V is the advective derivative, p
is the fluid density, @ is the gravitational potential, p is the
pressure, and v is the kinematic viscosity. The traceless rate-of-
1 (ou oU 1
oy T ax:> B E(SUV'U’
where ¢;; is the Kronecker delta. The angular velocity is given
by @=(0, 0, Qp), fs is a damping function, T is the
temperature, and s is the specific entropy. The F,4 and Fsgs
are the radiative and subgrid-scale (SGS) entropy fluxes, and
A and ¥ describe heating and cooling, respectively.

An ideal gas equation of state with p = RpT is used, where
R = ¢p — ¢y is the gas constant, and cp and cy are the heat
capacities at constant pressure and volume, respectively. The
gravitational potential ® corresponds to an isentropic polytrope
of a main-sequence M5 star (see Appendix A of Dobler et al.
2006). Flows in the exterior to the star are damped through the
term f;, = —%mpfe (r), where Tgamp is a damping timescale, and

strain tensor is given by S; =

£ :% 1+ tanhr;d‘—:‘d::" , Faamp = 1.03R,  and

Waamp = 0.03R. The damping timescale Tgump = 0.27y, Where

Tig = JR3/GM is the freefall time, G is the gravitational
constant, and M is the mass of the star.
The radiative flux is given by F.,g = —KVT, where

where

K(p, T) = Ko(p/pp)*~"(T/To)"*>, )
where a = —1 and b ="7/2 correspond to the Kramers opacity
law (e.g., Brandenburg et al. 2000). Additional SGS entropy
flux is included with Fsgs = —xggsp V', where s’ = s — (s),

is the fluctuation of the entropy, and (s),(x, #) is a running
temporal mean computed over an interval of 10 freefall times.
Nuclear energy production in the core of the star is
parameterized by the heating term 5 with a Gaussian profile,

%(r) — Lgim
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and w;, =0.162R is the width of the Gaussian. The cooling
term % models radiative losses above the stellar surface with
E(x) = p@%fe (r), where Tcool = Tgamp 1S @ cooling

cool

2
exP(_#sz , where Lgn is the luminosity,

timescale, and ig:urf is the fixed surface temperature.

The fluid and magnetic Reynolds numbers and the Péclet
number are given by Re = u.,/(vk), Reyy = PnyRe =
Ums/(nk), and Pe = PrgsRe = Urms/(Xsgsk)s Where iy
is the volume-averaged rms velocity in the CZ, k; = 27/AR is
the wavenumber corresponding to the approximate depth of
the CZ with Ar=0.35R, and Pry = v/n and Prsgs = v/ XsGs
are the magnetic and SGS Prandtl numbers, respectively.
Rotational influence on the flow is measured by the Coriolis
number, Co = 2Qy/(umsk1). Magnetic fields are measured in

terms of the equipartition field strength Beq = (\/1opU?),
where (. ) refers to time and volume averaging over the CZ.
Mean values are taken to be azimuthal averages and denoted

Kipyld

by overbars. The PENCIL CODE (Pencil Code Collaboration
et al. 2021)1 was used to make the simulations.

The setup of the simulations is otherwise identical to those in
Kipylda (2021) except that the amplitude of the radiative
conductivity K, is enhanced such that in the thermodynami-
cally saturated state, the star has a radiative core (CZ) that
encompasses roughly two-thirds (one-third) of the stellar
radius. Furthermore, the diffusion coefficients 7, v, and xsgs
have radial profiles such that their values in the radiative core
are 10% smaller than in the CZ to avoid diffusive spreading of
magnetic fields and flows into the core. This nevertheless
happens in many runs during the initial transient toward a
statistically steady state for the flow. This is due to the fact that
the initial state of the simulations is an isentropic polytrope,
and because of this choice, the star is fully convective in the
early stages. To circumvent this issue, the magnetic field is
rescaled to the loff’Beq level after a statistically steady state for
the flow and thermodynamics is reached. The simulations are
then further evolved until the magnetic field reaches a
statistically steady state. Another possibility to avoid spreading
the magnetic fields into the core is to add a seed magnetic field
only after the hydrodynamic run has matured (e.g., Matilsky &
Toomre 2021). The simulations at the higher resolutions (576°
and 1152°) were remeshed from such saturated snapshots from
the low-resolution (2883) cases.

3. Results

The simulations are summarized in Table 1. The models
cover a modest range of Coriolis numbers between 5.6 and 17,
where cyclic dynamos with a dominating axisymmetric
magnetic fields are found. Runs with slower rotation produce
quasi-static magnetic fields, whereas for more rapid rotation,
nonaxisymmetric fields and less coherent cycles become
dominant. The run with the highest resolution (Ch) has
completed only one full cycle; therefore, it is not used in the
statistical analysis of the cycle periods but merely to
demonstrate that the cycles also persist at higher Reynolds
numbers. A more comprehensive study of the simulations,
including the slower and faster rotation cases, will be presented
elsewhere.

3.1. Magnetic Fields and Cycles

The current simulations produce dynamos where the
magnetic energy En,, is a significant fraction of the kinetic
energy Eyi,;see the sixth column of Table 1. The ratio
Ermag/Exin is practically constant as a function of Co in the
parameter regime studied here, which differs from the scaling
found in Augustson et al. (2019), and the MAC balance, which
is often assumed to hold for the saturation level of the magnetic
fields (e.g., Brun & Browning 2017).

The azimuthally averaged radial magnetic fields near the
surface of the star and the toroidal magnetic field near the base
of the CZ for runs A, C, and D are shown in Figures 1(a)and
(d), (b) and (g), (e) and (h), respectively. The rest of the runs
follow very similar patterns. All of these cases show a solar-
like pattern of magnetic field evolution at the surface with
strong radial fields concentrated in latitudes |0 <50° and
activity propagating equatorward. A weaker poleward branch is
visible in some runs; see Figure 1(b). While a similar pattern

! https://github.com/pencil-code/
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Figure 1. Panels (a), (d), and (g): azimuthally averaged radial magnetic field B, (0, t) from r = R for runs A (top), C (middle), and D (bottom). Panels (b), (), and (h):
azimuthally averaged toroidal field By (0, t) from r = 0.65R. The field strength is given in terms of the equipartition field Beg. Panels (c), (f), and (i): power spectra of
the velocity (Ex) and magnetic fields (Eyy) from r = 0.85R as functions of spherical harmonic degree ¢. The gray (yellow) lines indicate nonaxisymmetric (mm = 0)
contributions. Dotted lines indicate the Kolmogorov 33 scaling. The inset shows the normalized fraction of the axisymmetric (m = 0) contributions.

Table 1
Summary of the Simulations
Run Co Re  Pe Rey  FEumae ENC DR EP e Pot/PAST1073] By /PESP[1073] Grid
A 5.6 55 11 27 0.61 0.011 0.038 0.091 0.128 3.7+08 34405 288°
B 7.0 53 10 26 0.63 0.010 0.050 0.094 0.152 55+04 51403 288°
C 10.0 49 9 24 0.61 0.008 0.050 0.096 0.146 46+04 4.1+0.2 288>
Cd 9.9 49 9 24 0.55 0.007 0.047 0.084 0.128 39+0.6 39+04 288°
Ce 10.3 48 9 24 0.89 0.008 0.049 0.117 0.127 no cycle no cycle 288°
Cm 9.7 102 20 51 0.66 0.008 0.034 0.055 0.081 51405 49+04 576°
Cl 9.9 100 20 100 0.71 0.008 0.033 0.030 0.044 5.0+0.8 55408 576°
Ch 9.5 260 52 130 0.69 0.008 0.035 0.026 0.041 (3.6) (3.6) 1152
D 17.3 42 8 21 0.63 0.006 0.019 0.117 0.071 48+03 40+03 288°
Note. Here Ep = %(BZ /ty) and  Eyp = %(pU %) are the total magnetic and kinetic energies, and ER% = %((E,z + B /1), Eno = %(Fg / ho)s
EMC — %(p(Urz + U})), and ERR = %(pUﬁ) refer to the energies of the poloidal and toroidal magnetic fields and the meridional circulation and differential
rotation, respectively, whereas tildes refer to normalization by Ey;,,. Here Pg;‘f and Pg‘;gp are the cycle periods measured from B, at the surface and B, at the base of the

CZ. In all runs, Pry; = 0.5 and Prggs = 0.2, except run C1, where Pry; = 1.

can be seen for F¢ near the surface, the dynamo wave
propagates poleward near the base of the CZ.

Power spectra of the velocity and magnetic fields from a
spherical harmonic decomposition are shown in Figures 1(c),
(f), and (i) for runs A, C, and D. The magnetic power spectrum
has its maximum at the largest possible scale (/=1) for all
runs. The maximum of the velocity power occurs at £ 2> 20, and
the peak moves to larger ¢ with increasing rotation as the

convective cells become smaller. The spectra indicate a clear
separation of scales between the dominant scales of convection
and those of the magnetic field. The insets of Figures 1(c), (f),
and (i) show the fraction of the power in the axisymmetric
(m =0) part for £ < 10. In this range, the odd ¢ contributions
dominate the velocity field. However, these contributions are
still clearly subdominant in the kinetic energy, which is
dominated by convective flows with £ 2> 10. The large-scale
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Figure 2. Azimuthally averaged magnetic fields in units of B in cylindrical coordinates (o, z) for runs A (a), C (b), and D (c) as functions of time for a time span of
3 x 10? freefall times corresponding to a full cycle in run A. The still shows the magnetic fields near the end of a cycle of the near-surface mode. The maximum

E max

poloidal field strength B

is indicated in the lower right corners. The color contours show the toroidal fields, and the arrows indicate the poloidal fields. The red,

blue, and gray lines indicate the bottom of the CZ (rcz), the bottom of the overshoot layer (roz), and the surface of the star (r = R), respectively.

(An animation of this figure is available.)

magnetic fields are dominated by the axisymmetric (¢, m) = (1,
0) component with half or more of the total power in all cases.

The evolution of the mean magnetic fields in runs A, C, and
D is shown in the animations in Figure 2. These visualizations
show that strong magnetic fields are concentrated near the
surface of the star outside the tangent cylinder and near the
interface between radiative zones and CZs inside the tangent
cylinder. Strong magnetic fields can also be found within the
CZ at higher latitudes. This could suggest the presence of
multiple dynamo modes that have been detected in simulations
previously (e.g., Beaudoin et al. 2016; Kipyli et al. 2016). In
distinction to these studies, the cycles in the deep parts and near
the surface in the current simulations are synchronized such
that their periods are the same. Magnetic fields also penetrate
into the upper part of the radiative core down to a depth
r~ 0.5R. To illustrate this, the bottoms of the CZ (rcz) and the
overshoot layer (roz) are indicated in Figure 2 by red and blue
lines, respectively, where rc; is defined as the depth where the
total convected luminosity (Lcony) = (Lenth) + (Lkin) (see
Képyld 2021) changes from negative to positive, whereas roz
is where the kinetic energy luminosity (L;,) drops below
102Lgm (e.g., Képyld 2019). The extent of this penetration is
highly likely to be unrealistic, but such effects, albeit
quantitatively different, can still conceivably occur at the
interfaces of stellar radiative and convective zones.

The sensitivity of the dynamo solution was tested using two
runs branched from run C in which the magnetic diffusivity
was either decreased (run Cd) or enhanced (run Ce) by an order
of magnitude in the exterior r > 1.03R. Run Cd shows only
small differences from run C, whereas in run Ce, the dynamo
mode switches to a nonoscillatory state. This suggests that the
dynamo solution is sensitive to the boundary conditions (see
also Pipin & Kosovichev 2011; Bonanno 2016). This could
imply that the typically applied radial field or potential field
extrapolation conditions are too restrictive.

3.2. Flow States and Dynamo Considerations

All of the current simulations are in the solar-like differential
rotation regime, which is characterized by a faster equator and
slower poles; see Figure 3(a). However, the differential rotation
is generally weak, such that the amplitude is typically of the
order of a couple of percent of (), everywhere except near the
axis, where the data are poorly converged. This is also apparent
from the seventh and eighth columns of Table 1, which show
that the energies associated with differential rotation and
meridional circulation are at most a few percent of the total
kinetic energy. This is partly due to the damping of flows in the
exterior, which exerts a torque that opposes differential rotation.
Nevertheless, the current simulations also show a minimum of €2
at midlatitudes, which has been conjectured to be the cause of
equatorward migration by a dominating af) dynamo in earlier
spherical shell simulations (Warnecke et al. 2014).

The other ingredient in such models is the kinetic helicity,
H=w - U, where w=V xU is the vorticity, which is
negative (positive) in the upper (lower) part of the CZ in the
northern hemisphere (Figure 3(b)). The kinetic helicity is taken
as a proxy of the mean-field « effect with @ o« —H (e.g., Krause
& Rédler 1980). A sign change of H occurs in the deep layers of
the CZ everywhere except near the equator, which is a common
feature in overshooting convection (e.g., Ossendrijver et al.
2001; Kiapyld et al. 2009). Thus, the sign of kinetic helicity
follows the sign of g - €2 in the bulk of the CZ, and a significant
helicity inversion and consequent reversal of the dynamo wave
as suggested by Duarte et al. (2016) do not occur. In the
saturated regime of the dynamo, the small-scale current helicity
C=—j - b/p, where b = B — B is the fluctuating magnetic
field and j=V X b/, can become significant. Figure 3(c)
indicates that the contribution from current helicity is of opposite
sign but roughly an order of magnitude weaker than H and
therefore subdominant in the dynamo action.
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helicity H = M/ (rmswrms) (b), normalized current helicity C = C/ (ttrmswrms) (€), and normalized product (H + C)%‘? =Th(H + C)i—? (d) from run C.

The helicities are weak in the upper part of the radiative core,
yet significant poloidal fields are present there; see Figure 2.
Turbulent pumping of fields from the CZ down to the radiative
zone and subsequent amplification by shear are a plausible
scenario to explain the strong fields in the upper part of the
radiative core. The weaker fields in the radiative layer in run D
are likely due to roughly thrice smaller relative differential
rotation in comparison to run C.

The product of the radial gradient of Q and 7= H + C
determines the propagation direction of the dynamo wave in
af) dynamos (Parker 1955; Yoshimura 1975). Figure 3(d)
indicates both poleward (70, < 0) and equatorward
(70,2 > 0) regions outside the tangent cylinder and predomi-
nantly poleward propagation in the lower part of the CZ inside
the tangent cylinder. It is tempting to associate the equatorward
branch near the surface with a corresponding patch of positive
70, and the poleward branch in the deep parts with a
corresponding patch of negative 70, () (in the northern
hemisphere). However, the Parker—Yoshimura rule strictly
applies only in the case of a pure af) dynamo with spatially
constant helicity and turbulent diffusion. The low ratio of
toroidal to poloidal magnetic energies (10th and 9th columns in
Table 1) also suggests that the dynamos in the current
simulations are not of the af) type.

In addition to the already-mentioned helicity inversion, further
possibilities to excite equatorward propagation include the near-
surface shear (e.g., Brandenburg 2005) and an o> dynamo with a
sign change of helicity at the equator (e.g., Mitra et al. 2010).
Neither of these possibilities can be ruled out immediately with
the data at hand, although the shear near the surface is not very
prominent in the current simulations. However, explanations
based on such simple models should be considered with caution
in light of a recent study by Warnecke et al. (2021), who found
that explaining the cause and evolution of large-scale magnetism
in a spherical shell simulation required a mean-field model with
18 turbulent transport coefficients derived using the test-field
method (e.g., Schrinner et al. 2007).

3.3. Rotational Scaling of Dynamo Cycles and
Magnetic Energy

Long-term observations of chromospheric emission of late-
type stars suggest that many such stars have magnetic cycles

similar to the Sun (e.g., Baliunas et al. 1995). It has also been
suggested that the ratio of stellar rotation period to cycle period
fall into a number branches as a function of the Coriolis
number (e.g., Brandenburg et al. 1998, 2017). These studies
suggest inactive and active branches with Prm/PCychCoﬂ,
where 3> 0. However, the exact nature (Olspert et al. 2018)
and the significance of the branches continue to be debated
(e.g., Boro Saikia et al. 2018). It is nevertheless interesting to
measure the ratio Py /Py from simulations to see if any
systematics can be found. This has been done in a handful of
studies; data from Warnecke (2018) indicate 3 = —0.99 + 0.05,
whereas data from Strugarek et al. (2018) show a steeper
relation with 3= —1.57 4+ 0.12; see Figure 4(a). Furthermore,
the results from a more heterogeneous set of simulations by
Viviani et al. (2018) also suggest 5 < 0. A notable exception is
the study of Guerrero et al. (2019), with 8= —0.47 + 0.15 for
slow and 8= 1.17 4 0.05 for rapid rotation; see Figure 4(a).

The cycle periods from the current simulations are computed
using the libeemd library (Luukko et al. 2015) using the
ensemble empirical mode decomposition. Periods are deter-
mined from B, (R, 6, ) and B,(0.65R, 6, 1), where —45° <
6, < 45° is the range of latitudes considered. The mode with
the largest energy is identified as the primary cycle, and the
period is computed from zero crossings of that mode. The mean
cycle period P is taken to be the average over ¢,. Error
estimates are provided by dividing the time series into three
parts and repeating the analysis for each part. The largest
deviation from the mean period over the full time series is taken
to represent the error. The current results indicate that the ratio
Pyot/Peyc is almost independent of Co in the parameter range
explored here with 3=0.14+0.16 (3=0.03 £0.25) for the
surface (deep) cycles; see Figure 4(a). These results differ
qualitatively from those of Strugarek et al. (2018) and
Warnecke (2018) that are also shown in Figure 4(a).” Guerrero
et al. (2019) reported results for Prot/Pcyc that are similar to
those obtained here from models that also included a radiative
layer below the CZ. However, the magnetic field configurations
achieved in that study are quite different from those here such
that, e.g., no clear equatorward migration is obtained.

2 The Rossby numbers from Strugarek et al. (2018) and Guerrero et al. (2019)

were converted to Coriolis numbers as Co = 27/Roy, and 27/Ro, respectively.
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Fits to full data (dotted lines) and subsets (dashed lines) where some data are omitted are shown (see text).

The ratio Po/Pcy in the current simulations is between

(3...5)x 1073, which is close to the solar value
Py /Peye = 6.5 x 1073 with Py = 26 days and Py, ~ 11 yr.

This and the near independence of Prm/PCyC on Co suggests
that the dynamos in the current simulations might capture some
of the characteristics of stars in the inactive branch, to which
the Sun also belongs (e.g., Brandenburg et al. 1998). However,
at the same time, it is clear that the current simulations do not
reproduce many other aspects of the Sun, such as the structure
and magnitude of the differential rotation.

Figure 4(b) shows the ratio of magnetic to kinetic energy for
the current simulations, as well as from the simulations of
Warnecke (2018),3 Strugarek et al. (2018), and Guerrero et al.
(2019). The data for Ep,g/Eyi, are heterogeneous, similar to
Pot/Peye, although the current results and those of Guerrero
et al. (2019) are consistent with independence of rotation. This
is true for the full data set and for the slow rotation runs with
Co < 6 in the latter study. The data from Warnecke & Képyld
(2020) and Strugarek et al. (2018) indicate a clearly increasing
trend as a function of rotation if the two outliers in the latter
case around Co = 20 are omitted. However, only the results of
Warnecke & Képyld (2020) are near the scaling expected from
the MAC balance, which suggests Ep,q /Exin x Co. It appears
that the different behaviors of Pyo/Peye and Epae/Exin are
connected such that a flat or increasing P,/ Py with rotation
implies a near independence of E,,,/Ei, on Co (present study
and Guerrero et al. 2019), while a decreasing Pyo/Pey. suggests
an increasing Emag/Ekin (Strugarek et al. 2018; Warnecke &
Kipyla 2020).

4. Conclusions

Star-in-a-box simulations of a solar-like convective envelope
were shown to produce solar-like magnetic activity on a limited
range of rotation rates. The current simulations share many
characteristics of earlier spherical shell models (e.g., Képyld
et al. 2012), including a local minimum of Q at midlatitudes,
which has been conjectured to be the cause of equatorward
migration in those studies (Warnecke et al. 2014). However,
the magnetic cycles in the current simulations show differences
from the earlier studies in that the equatorward migration of the
active latitudes is not restricted to midlatitudes with negative

3 Data taken from Warnecke & Kipyld (2020).

radial differential rotation. Furthermore, the rotational scaling
of the cycles is qualitatively different from the earlier studies in
spherical shells (e.g., Warnecke 2018), with a weak depend-
ence of P,y /Pcyc On rotation.

However, several differences from earlier studies can be
readily identified. These include the addition of a simplified
corona, which provides a free surface for the magnetic field,
rather than imposing simplified surface boundary conditions
(see also Warnecke et al. 2016). Another difference is the
inclusion of the radiative core, where strong magnetic fields
can be stored and possibly amplified by means other than
helical convection (e.g., Guerrero et al. 2019). Finally,
changing the geometry and size of the system also allows, in
general, a wider spectrum of dynamo modes that can be
excited. A more detailed analysis of the maintenance of the
magnetic fields is needed to precisely pinpoint the differences
from the earlier studies. Nevertheless, the current results
suggest that regions outside of the CZ shape the global dynamo
solutions, and that perhaps the dynamos in the Sun and other
inactive stars harbor dynamos where such effects are important.

This work was supported by Deutsche Forshungsge-
meinschaft Heisenberg grant KA4825/4-1. The simulations
were made using the HLRN-IV supercomputers Emmy and
Lise hosted by the North German Supercomputing Alliance
(HLRN) in Gottingen and Berlin, Germany. I thank Gustavo
Guerrero and Jorn Warnecke for sharing data from their
simulations, and the anonymous referee for constructive
comments.
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