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ABSTRACT

Context. The ratio of kinematic viscosity to thermal diffusivity, the Prandtl number, is much smaller than unity in stellar convection
zones.
Aims. The main goal of this work is to study the statistics of convective flows and energy transport as functions of the Prandtl number.
Methods. Three-dimensional numerical simulations of compressible non-rotating hydrodynamic convection in Cartesian geometry
are used. The convection zone (CZ) is embedded between two stably stratified layers. The dominant contribution to the diffusion of
entropy fluctuations comes in most cases from a subgrid-scale diffusivity whereas the mean radiative energy flux is mediated by a
diffusive flux employing Kramers opacity law. Here, we study the statistics and transport properties of up- and downflows separately.
Results. The volume-averaged rms velocity increases with decreasing Prandtl number. At the same time, the filling factor of down-
flows decreases and leads to, on average, stronger downflows at lower Prandtl numbers. This results in a strong dependence of
convective overshooting on the Prandtl number. Velocity power spectra do not show marked changes as a function of Prandtl number
except near the base of the convective layer where the dominance of vertical flows is more pronounced. At the highest Reynolds
numbers, the velocity power spectra are more compatible with the Bolgiano-Obukhov k−11/5 than the Kolmogorov-Obukhov k−5/3

scaling. The horizontally averaged convected energy flux (Fconv), which is the sum of the enthalpy (Fenth) and kinetic energy fluxes
(Fkin), is independent of the Prandtl number within the CZ. However, the absolute values of Fenth and Fkin increase monotonically
with decreasing Prandtl number. Furthermore, Fenth and Fkin have opposite signs for downflows and their sum F

↓

conv diminishes with
Prandtl number. Thus, the upflows (downflows) are the dominant contribution to the convected flux at low (high) Prandtl numbers.
These results are similar to those from Rayleigh-Benárd convection in the low Prandtl number regime where convection is vigorously
turbulent but inefficient at transporting energy.
Conclusions. The current results indicate a strong dependence of convective overshooting and energy flux on the Prandtl number. Nu-
merical simulations of astrophysical convection often use a Prandtl number of unity because it is numerically convenient. The current
results suggest that this can lead to misleading results and that the astrophysically relevant low Prandtl number regime is qualitatively
different from the parameter regimes explored in typical contemporary simulations.
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1. Introduction

The flows in solar and stellar convection zones (CZs) are char-
acterised by very high Reynolds and Péclet numbers Re =
u`/ν and Pe = u`/χ, respectively, where u and ` are typical
velocity and length scales, and ν and χ are the kinematic vis-
cosity and thermal diffusivity (e.g., Ossendrijver 2003; Käpylä
2011; Schumacher & Sreenivasan 2020). This implies very vig-
orous turbulence which means that resolving all scales down to
the Kolmogorov scale is infeasible (e.g., Chan & Sofia 1986).
Moreover, the ratio Pe/Re, which is the Prandtl number Pr =
ν/χ, is typically much smaller than unity in stellar CZs (e.g.,
Augustson et al. 2019). For example, values of the order of
Pr . 10−6 are typical in the solar CZ. Most numerical simu-
lations, however, are made with a Prandtl number of the order
of unity because greatly differing viscosity and thermal diffusiv-
ity would lead to a wide gap in the smallest physically relevant
scales of velocity and temperature. Therefore, reaching high Re
and Pe simultaneously in simulations with low Pr is prohibitively
expensive (e.g., Kupka & Muthsam 2017).

Recently, it has become clear that current simulations do not
capture some basic features of solar convection with sufficient
accuracy. Comparisons of helioseismic and numerical studies
suggest that the simulations produce significantly higher veloc-
ity amplitudes at large horizontal scales (e.g., Hanasoge et al.
2012, 2016). While discrepancies also exist between helioseis-
mic methods (see, e.g., Greer et al. 2015), there is another,
more direct piece of evidence from simulations: global and
semi-global simulations with solar luminosity and rotation rate
preferentially lead to anti-solar differential rotation with a slower
equator and faster poles (e.g., Fan & Fang 2014; Käpylä et al.
2014; Karak et al. 2018). This is indicative of an overly weak
rotational influence on the flow leading to an excessive Rossby
number. Simulations also suggest that inaccuracies in convec-
tive velocities of as little as 20–30% are sufficient for the rota-
tion profile to flip (Käpylä et al. 2014). The discrepancy between
simulations and observations has been dubbed the convective
conundrum (O’Mara et al. 2016).

There are several possible causes of the overestimation
of convective velocity amplitudes in current simulations. For
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example, the Rayleigh numbers in the simulations could be too
low (e.g., Featherstone & Hindman 2016) or it could be that con-
vection in the Sun is driven only in the thin near-surface layer,
whilst the rest of the CZ is mixed by cool entropy rain ema-
nating from the near-surface regions (Spruit 1997; Brandenburg
2016). In such scenarios, the bulk of the CZ would be weakly
subadiabatic while the convective flux would still be directed
outward because of a non-local non-gradient contribution to
the convective energy flux (Deardorff 1961, 1966). Such layers
have been named Deardorff zones (Brandenburg 2016), and have
been detected in many simulations (e.g., Chan & Gigas 1992;
Roxburgh & Simmons 1993; Tremblay et al. 2015; Hotta 2017;
Käpylä et al. 2017). However, the effect of Deardorff layers on
velocity amplitudes in rotating convection in spherical coor-
dinates appears to be weak (Käpylä et al. 2019). Furthermore,
while there is evidence of the importance of surface driving (e.g.,
Cossette & Rast 2016), it appears that this effect is also rather
weak (Hotta et al. 2019).

Another possible cause of the discrepancy is unrealistic
Prandtl numbers typically used in simulations. It is numerically
convenient to use Pr = 1, although several recent studies have
explored the possibility that stellar convection might operate in
a high effective (turbulent) Prandtl number regime with Pr & 1
(e.g., O’Mara et al. 2016; Bekki et al. 2017; Karak et al. 2018).
One conclusion from these studies is that while the average
velocity amplitude decreases as the Prandtl number increases,
turbulent angular momentum transport is predominantly down-
ward and leads to exacerbation of the anti-solar differential
rotation issue at solar rotation rate and luminosity (Karak et al.
2018). Apart from the theoretical problem of explaining how
the Sun switches from Pr � 1 –suggested by microphysics–
to Pr & 1, the numerical studies appear to disfavour the possi-
bility of an effective Prandtl number of greater than unity in the
Sun.

The small Prandtl number limit, which is indicated by
estimates of molecular diffusivities in stellar CZs (e.g.,
Augustson et al. 2019; Schumacher & Sreenivasan 2020), has
also been considered in various studies. An early work by
Spiegel (1962) explored the limit of zero Prandtl number in
Boussinesq convection. This latter author showed that the tem-
perature fluctuations are enslaved to vertical motions which
leads to highly non-linear driving of convection. Subsequent
numerical studies in the low-Pr regime showed that convec-
tion becomes highly inertial with a tendency for coherent large-
scale flow structures to intensify (e.g., Breuer et al. 2004) along
with vigorous turbulence. Studies of compressible convection
have also explored the Prandtl number dependence, although
its signifigance has gone largely unrecognised. For example,
the results of Cattaneo et al. (1991) showed that the net energy
flux due to downflows is reduced as a function of Pr, whereas
the downward kinetic energy flux and upward enthalpy flux
both increase as Pr decreases. These authors, however, did not
connect this to the changing Prandtl number but rather con-
cluded that these effects are a consequence of an increase in
the Reynolds number or the degree of turbulence. Results sim-
ilar to those of Cattaneo et al. (1991) were also reported by
Singh & Chan (1993). On the other hand, Brandenburg et al.
(2005) found that the correlation coefficients of velocity and
temperature fluctuations with the enthalpy flux remained Pr-
dependent at least to Reynolds numbers of the order of 103.
Finally, Orvedahl et al. (2018) studied non-rotating anelastic
convection in spherical coordinates and found that the overall
velocity amplitude increases as the Prandtl number decreases
while the spectral distribution of velocity is insensitive to Pr.

Here, the Prandtl number dependence of convective flow
statistics, overshooting, and energy fluxes are studied systemati-
cally with a hydrodynamic convection setup in Cartesian geom-
etry. A motivation of the current study is a prior work (Käpylä
2019a) where it was found that convective overshooting is sensi-
tive to the Prandtl number and that earlier numerical results pre-
dicting weak overshooting for solar parameters were obtained
from simulations where Pr & 1 or Pr � 1. This implies a change
in the magnitudes, dominant scales, or other transport proper-
ties, such as correlations with thermodynamic quantities of con-
vective flows, all of which are investigated in the present study.
Overshooting is also closely related to the convective energy
transport which is another focus of the current study. In particu-
lar, we study the overall transport properties as a function of Pr
and the respective roles of up- and downflows.

2. The model

The setup used in the current study is the same as that in Käpylä
(2019a). We solve the equations for compressible hydrodynam-
ics

D ln ρ
Dt

= −∇ · u, (1)

Du
Dt

= g −
1
ρ

(∇p − ∇ · 2νρS), (2)

T
Ds
Dt

= −
1
ρ

[∇ · (Frad + FSGS) + Γcool] + 2νS2, (3)

where D/Dt = ∂/∂t + u · ∇ is the advective derivative, ρ is the
density, u is the velocity, g = −gêz where g > 0 is the accel-
eration due to gravity, p is the pressure, T is the temperature,
s is the specific entropy, and ν is the kinematic viscosity. Fur-
thermore, Frad and FSGS are the radiative and turbulent sub-grid
scale (SGS) fluxes, respectively, and Γcool describes cooling near
the surface. S is the traceless rate-of-strain tensor with

Si j =
1
2

(ui, j + u j,i) −
1
3
δi j∇ · u. (4)

Radiation is modelled via the diffusion approximation, corre-
sponding to an optically thick, fully ionised gas. The ideal gas
equation of state p = (cP − cV)ρT = RρT is assumed, where R
is the gas constant, and cP and cV are the specific heat capacities
at constant pressure and volume, respectively. The radiative flux
is given by

Frad = −K∇T, (5)

where K(ρ,T ) is the radiative heat conductivity,

K =
16σSBT 3

3κρ
, (6)

with σSB being the Stefan-Boltzmann constant where κ is the
opacity. The latter is assumed to obey the power law

κ = κ0(ρ/ρ0)a(T/T0)b, (7)

where ρ0 and T0 are reference values of density and temperature.
In combination, Eqs. (6) and (7) give

K(ρ,T ) = K0(ρ/ρ0)−(a+1)(T/T0)3−b. (8)

With the choices a = 1 and b = −7/2, this corresponds to the
Kramers opacity law (Weiss et al. 2004), which was first used in
convection simulations by Brandenburg et al. (2000).
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The fixed flux at the bottom of the domain (Fbot) fixes the
initial profile of radiative diffusivity, χ = K/(cPρ), which varies
strongly as a function of height. Thus, additional SGS diffusiv-
ity is added in the entropy equation to maintain the numerical
feasibility of the simulations. Here the SGS flux is formulated as

FSGS = −ρTχSGS∇s′, (9)

where s′ = s − s is the fluctuation of the specific entropy from
the horizontally averaged mean which is denoted by an over-
bar. The mean s = s(z, t) is computed at each time-step. The
coefficient χSGS is constant throughout the simulation domain1.
The net horizontally averaged SGS flux is negligibly small,
such that FSGS ≈ 0. This formulation differs from those used
by Featherstone & Hindman (2016) and Karak et al. (2018), for
example, where the SGS diffusion is applied to the total entropy.
Physically, the current SGS diffusion can be envisaged to be
operating on sufficiently small scales such that the gradients of
the fluctuating entropy dominate over those of the mean. This
is most likely fully justified only at very high Péclet numbers.
While the Péclet numbers in the current simulations are at best
modest, the current formulation minimises the effects of the SGS
diffusion on the mean energy flux, which would also be reflected
by the resolved convective flux. On the other hand, this formula-
tion captures the effects of the SGS Prandtl number in the veloc-
ity and entropy fluctuations and therefore in the corresponding
turbulent fluxes.

The cooling near the surface is given by

Γcool = −Γ0h(z)[Tcool − T (x, t)], (10)

where Γ0 is a cooling luminosity, h(z) is a profile function, T =
e/cV is the temperature, e is the internal energy, and Tcool = Ttop
is the fixed reference temperature at the top boundary.

2.1. Geometry, initial, and boundary conditions

The computational domain is a rectangular box where zbot ≤

z ≤ ztop is the vertical coordinate. With zbot/d = −0.45 and
ztop/d = 1.05, where d is the depth of the initially isentropic
layer (see below), the vertical extent is Lz = ztop − zbot = 1.5d.
The horizontal size of the domain is LH/d = 4 and the horizontal
coordinates x and y run from −2d to 2d.

The initial stratification consists of three layers such that the
two lower layers are polytropic with polytropic indices n1 = 3.25
(zbot/d ≤ z/d ≤ 0) and n2 = 1.5 (0 ≤ z/d ≤ 1). The uppermost
layer above z/d = 1 is initially isothermal with T = Ttop. The
latter mimics a photosphere where radiative cooling is efficient.
The initial stratification is set by the normalised pressure scale
height at the top boundary

ξ0 =
RTtop

gd
. (11)

All of the current runs have ξ0 = 0.054. The choices of n1 and
n2 are close to those expected for the thermal stratifications in
the radiative (see Barekat & Brandenburg 2014 and Appendix A
of Brandenburg 2016) and convective layers, respectively. Prior
experience confirms the validity of these choices (see, e.g.,
Käpylä et al. 2019), although the extent of the CZ is an outcome
of the simulation rather than being fixed by the input parameters
(Käpylä et al. 2017; Käpylä 2019a). Convection ensues because
the system is initially in thermal inequilibrium.

1 χSGS corresponds to χ(1)
SGS in Käpylä (2019a).

The horizontal boundaries are periodic, and impenetrable
and stress-free boundary conditions according to

∂ux

∂z
=
∂uy

∂z
= uz = 0 (12)

are imposed on the vertical boundaries. The temperature gradient
at the bottom boundary is set according to

∂T
∂z

= −
Fbot

Kbot
, (13)

where Fbot is the fixed input flux and Kbot(x, y, zbot, t) is the value
of the heat conductivity at the bottom of the domain. On the
upper boundary, constant temperature T = Ttop coinciding with
the initial value is assumed.

2.2. Units, control parameters, and simulation strategy

The units of length, time, density, and entropy are given by

[x] = d, [t] =
√

d/g, [ρ] = ρ0, [s] = cP, (14)

where ρ0 is the initial value of density at z = ztop. The models are
fully defined by choosing the values of the kinematic viscosity
ν, gravitational acceleration g, the values of a, b, K0, ρ0, T0, Γ0
and the SGS and effective Prandtl numbers

PrSGS =
ν

χSGS
, Preff(z) =

ν

χSGS + χ(z)
, (15)

along with the cooling profile h(z). The values of K0, ρ0, T0 are
subsumed into a new variable K̃0 = K0ρ

a+1
0 T b−3

0 which is fixed by
assuming Frad(zbot) = Fbot in the initial state. The profile h(z) = 1
for z/d ≥ 1 and h(z) = 0 for z/d < 1, connecting smoothly over
a layer of width 0.025d. The normalised flux is given by

Fn = Fbot/ρbotc3
s,bot, (16)

where ρbot and cs,bot are the density and the sound speed, respec-
tively, at zbot in the initial non-convecting state. The current runs
have Fn ≈ 4.6 × 10−6 corresponding to runs K3 and K3h in
Käpylä (2019a).

The advective terms in Eqs. (1)–(3) are formulated in terms
of a fifth-order upwinding derivative with a hyperdiffusive sixth-
order correction with a flow-dependent diffusion coefficient; see
Appendix B of Dobler et al. (2006).

2.3. Diagnostics quantities

The following quantities are outcomes of the simulations that
can only be determined a posteriori. These include the global
Reynolds number and the SGS and effective Péclet numbers

Re=
urms

νk1
, PeSGS =

urms

χSGSk1
, Pe(z)=

urms

[χSGS + χ(z)]k1
, (17)

where urms is the volume-averaged rms-velocity and k1 = 2π/d
is an estimate of the wavenumber corresponding to the largest
eddies in the system.

To assess the level of supercriticality of convection, the
Rayleigh number is defined as:

Ra(z) =
gd4

ν[χSGS + χ(z)]

(
−

1
cP

ds
dz

)
. (18)

The Rayleigh number varies as a function of height and is quoted
near the surface at z/d = 0.85 for all models. Convention-
ally, the Rayleigh number in the hydrostatic, non-convecting
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Table 1. Summary of the runs.

Run PrSGS Prtop
eff

Prbot
eff Re PeSGS Petop Pebot Ra

A01 0.1 0.1 0.1 48 4.8 4.8 4.7 5.9 × 105

B01 0.1 0.1 0.1 93 9.3 9.3 9.2 2.3 × 106

C01 0.1 0.1 0.1 190 19 19 18 8.4 × 106

C01b 0.1 0.1 0.1 318 32 32 30 2.3 × 107

C01c 0.1 0.1 0.1 473 47 47 43 5.2 × 107

A02 0.2 0.2 0.2 44 8.8 8.8 8.6 9.7 × 105

B02 0.2 0.2 0.2 89 18 18 17 4.0 × 106

C02 0.2 0.2 0.2 178 36 35 33 1.6 × 107

A05 0.5 0.5 0.5 41 20 20 20 2.1 × 106

B05 0.5 0.5 0.5 85 42 42 39 9.9 × 106

A1 1.0 1.0 0.9 39 39 39 35 4.2 × 106

B1 1.0 1.0 0.8 84 84 83 70 2.1 × 107

C1 1.0 1.0 0.7 175 175 170 127 8.1 × 107

A2 2.0 2.0 1.7 38 75 74 63 8.4 × 106

B2 2.0 1.9 1.4 82 164 159 118 4.1 × 107

A5 5.0 4.8 3.3 36 181 175 121 2.1 × 107

B5 5.0 4.7 2.5 80 399 374 203 9.9 × 107

A10d 10 9.9 9.1 2.7 27 27 24 3.5 × 105

A10c 10 9.9 8.3 5.9 59 59 49 1.0 × 106

A10b 10 9.6 6.7 16 163 157 109 8.5 × 106

A10 10 9.3 5.0 35 354 331 178 4.1 × 107

B10 10 8.8 3.4 79 791 697 269 1.9 × 108

C10 10 7.8 2.1 167 1667 1308 347 6.4 × 108

Notes. The superscripts ‘top’ and ‘bot’ refer to z/d = 0.85 and to the
bottom of the CZ, zCZ, respectively. Γ0 = 2.5cP(gρ0)1/2 in all of the
runs. The grid resolutions are 2883 (set A), 5763 (B), and 11523 (C),
respectively.

state is one of the control parameters. In the current models
with Kramers conductivity, the convectively unstable layer in the
hydrostatic case is very thin and confined to the near-surface lay-
ers (Brandenburg 2016). Thus, the Rayleigh numbers are quoted
from the thermally saturated statistically stationary states.

Contributions to the horizontally averaged vertical energy
flux are:

Frad = −K
∂T
∂z
, (19)

Fenth = cP(ρuz)′T ′, (20)

Fkin =
1
2
ρu2u′z, (21)

Fvisc = −2νρuiSiz (22)

Fcool =

∫ ztop

zbot

Γcooldz. (23)

Here the primes denote fluctuations and overbars horizontal
averages. The total convected flux (Cattaneo et al. 1991) is the
sum of the enthalpy and kinetic energy fluxes:

Fconv = Fenth + Fkin. (24)

The CZ is defined as the region where Fconv > 0. The vertical
position of the bottom of the CZ is given by zCZ. Error estimates
for diagnostics are obtained by dividing the time-series into three
parts of equal length and computing averages over each of them.
The largest deviation of these averages from the time average
over the whole time-series is taken to represent the error.

The Pencil Code (Pencil Code Collaboration 2021)2 was
used to produce the simulations. At the core of the code is a
switchable finite difference solver for partial differential equa-
tions that can be used to study a wide selection of physical prob-
lems. In the current study, a third-order Runge-Kutta time step-
ping method and centred sixth-order finite differences for spatial
derivatives were used (cf. Brandenburg 2003).

3. Results

All of the runs discussed in the present study were branched
off from run K3h of Käpylä (2019a); see Table 1 for a sum-
mary of the simulations. A thermally saturated snapshot of this
run was used to produce new low-resolution models labeled
the A set with SGS Prandtl numbers ranging between 0.1 and
10. The runs in the intermediate(high)-resolution set B(C) were
remeshed from saturated snapshots of the corresponding runs in
set A(B). Only a subset of PrSGS values were done at the highest
grid resolution in set C.

3.1. Flow characteristics

Figure 1 shows visualisations of the flows and entropy fluc-
tuations in cases with PrSGS = 0.1, 1, and 10 (Re = 190,
175, and 167) corresponding to runs C01, C1, and C10. Visual
inspection of the velocity patterns does not reveal notable dif-
ferences at large scales such that the dominant granule sizes in
the three cases are similar. Smaller scale structures in the veloc-
ity appear especially near the surface as the SGS Prandtl num-
ber increases; see the middle and bottom panels of Fig. 1. Nev-
ertheless, the velocity patterns are remarkably similar in com-
parison to the entropy fluctuations which change dramatically
as PrSGS increases from 0.1 to 10. In the PrSGS = 0.1 case
the strong downflows coincide with smooth regions of nega-
tive (cool) entropy fluctuations, whereas the surrounding areas
are almost featureless. In contrast, in the PrSGS = 10 case the
smooth negative entropy regions have disintegrated into numer-
ous smaller structures that are often detached from each other.
The entropy fluctuations in the PrSGS = 1 run show an inter-
mediate behaviour with traces of both large- and small-scale
structures.

The averaged rms velocity as a function Preff from all runs
is shown in Fig. 2. There is a tendency for urms to increase
with decreasing PrSGS which was first reported by Singh & Chan
(1993) in compressible convection. Data for approximately con-
stant Pe is suggestive of a power law with exponent around
−0.13; see the dotted lines in Fig. 2. A similar dependence
can be seen in the suitably scaled data of non-rotating spheri-
cal shell simulations R0P[1,2,6] of Karak et al. (2018); see the
crosses in Fig. 2. However, their run with the highest Pr (R0P20)
appears to be an outlier. The results of Orvedahl et al. (2018)
also indicate an increase in kinetic energy as the Prandtl number
decreases. Furthermore, qualitatively similar results have been
reported from Boussinesq convection (e.g., Breuer et al. 2004;
Scheel & Schumacher 2016), although in the work of these lat-
ter authors the dependence of urms on Pr is much steeper. This
is because, in Rayleigh-Bénard convection, the total flux trans-
ported by convection depends strongly on the Prandtl number.

A distinct characteristic of convection is that the vertical
flows are the main transporter of the energy flux. A diagnostic
of the structure of vertical flows is the filling factor f of up-
or downflows. Here the filling factor is defined as the area the

2 https://github.com/pencil-code/
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Fig. 1. Left panels: normalised vertical velocity ũz = uz(dg)−1/2 (colour contours) and streamlines of the flow from runs C01 (PrSGS = 0.1, top
panel), C1 (PrSGS = 1, middle), and C10 (PrSGS = 10, bottom). The colours of the streamlines indicate the local vertical velocity. Right panels:
normalised entropy fluctuations s̃′(x) = [s(x) − s(z)]/s′rms(z) from the same runs.

downflows occupy at each depth such that the horizontally aver-
aged vertical velocity is given by

uz(z) = f (z)u↓z (z) + [1 − f (z)]u↑z (z), (25)

where uz is the mean vertical velocity whereas u↓z and u↑z are the
mean velocities in the down- and upflows, respectively. Figure 3a
shows f for runs B01, B1, and B10 with PrSGS = 0.1, 1, and
10. These results indicate that the filling factor decreases with

decreasing SGS Prandtl number. However, the change is rel-
atively minor such that f differs by roughly 20% in the bulk
of the CZ between the extreme cases with PrSGS = 0.1 and
10. The filling factor plays an important role in analytic and
semi-analytic two-stream models of convection (e.g., Rempel
2004; Brandenburg 2016). For example, in the updated mixing
length model of Brandenburg (2016), a very small filling factor
is needed in cases where the Schwarzschild unstable part of the
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Fig. 2. Volume- and time-averaged rms velocity as a function Preff(zCZ)
for all of the current runs (circles). The colours (sizes) of the symbols
indicate the Péclet number (relative error) as indicated in the colour bar
(legend). The dotted lines show power laws proportional to Pr−0.13

eff for
reference. The crosses show the scaled results from the non-rotating
runs R0P[1,2,6,20] of Karak et al. (2018); see their Table 1.

CZ is particularly shallow. The current simulations suggest that
the filling factor goes in that direction when PrSGS decreases, but
it appears that the smallest values of the order of 10−4 in some of
the models of Rempel (2004) and Brandenburg (2016) are ruled
out.

The filling factor increases as a function of Re and PeSGS
for a given PrSGS; see Fig. 3b for representative results for
PrSGS = 0.1 where χSGS � χ. It is plausible that a growing con-
tribution from nearly isotropic small-scale eddies that become
more prominent with increasing Re is partly responsible for the
increasing trend of f as a function of the Reynolds number. How-
ever, preliminary studies using low-pass filtered data suggest that
this effect is very subtle. Irrespective of the Re dependence of f ,
the energetics of the underlying larger scale granulation appear
to be almost unaffected by Re; see Sect. 3.3.

3.2. Overshooting below the convection zone

It is of interest to study the extent of convective overshooting
below the CZ given the systematic dependence of the overall
convective velocities on PrSGS. The same definition of overshoot-
ing as in Käpylä (2019a) is used. This is outlined by defining
the bottom of the CZ (zCZ) to be the depth where Fconv changes
from positive to negative. This depth is used to obtain a ref-
erence value of the horizontally averaged kinetic energy flux
F

ref
kin = Fkin(zCZ, t). The instantaneous overshooting depth zOS is

then taken to be the depth where Fkin(z, t) drops below 10−2F
ref
kin.

The mean thickness of the overshoot layer is defined as

dos =
1
∆t

∫ t1

t0
[zCZ(t) − zOS(t)]dt, (26)

where ∆t = t1 − t0, and t0 and t1 denote the beginning and end of
the time-averaging period.

Figure 4 shows dos from all runs as a function of PrSGS. The
current results confirm the conjecture of Käpylä (2019a) that
dos is sensitive to the Prandtl number. However, the results still
depend of the Péclet number especially for low PrSGS where it is
challenging to reach high values of Pe. Nevertheless, comparing
dos for approximately the same Pe, for example Pe ≈ 40 (light
blue symbols in Fig. 4), shows that the overshooting is increasing
monotonically as PrSGS decreases. The difference in dos between

Fig. 3. Filling factor of downflows for SGS Prandtl numbers 0.1 (solid
line), 1 (dashed), and 10 (dash-dotted) as indicated by the legend from
runs B01, B1, and B10 (a). Filling factor in runs with PrSGS = 0.1 with
different PeSGS (b). The vertical dotted lines indicate the depths from
which representative data for the top, middle, and bottom of the CZ are
considered.

Fig. 4. Thickness of the overshoot layer dos normalised by the pressure
scale height Hp(zCZ) for all runs as a function of Preff(zCZ). The colours
(sizes) of the symbols indicate the Péclet number (relative error) as indi-
cated in the colour bar (legend).

the cases PrSGS = 1 and PrSGS = 0.1 is about 30%. However,
the difference decreases as the Péclet number increases; never-
theless it does not appear likely that the Pr dependence would
disappear at even higher Péclet numbers.

Several numerical studies have shown that the deep parts
of density-stratified CZs are often weakly stably stratified
(e.g., Chan & Gigas 1992; Tremblay et al. 2015; Bekki et al.
2017; Hotta 2017; Käpylä et al. 2017). Such layers have also
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Fig. 5. Thickness of the Deardorff layer dDZ normalised by the pressure
scale height Hp(zCZ) for all runs as a function of Preff(zCZ). The colours
(sizes) of the symbols indicate the Péclet number (relative error) as indi-
cated in the colour bar (legend).

been found from semi-global and global simulations of rotat-
ing solar-like CZs (e.g., Karak et al. 2018; Käpylä et al. 2019;
Viviani & Käpylä 2021) as well as from fully convective spheres
(Käpylä 2021). We call this layer the Deardorff zone after
Brandenburg (2016). This layer is characterised by a positive
vertical gradient of entropy, ds/dz > 0, along with a positive
convective energy flux, Fconv > 0. The mean thickness of the
Deardorff zone is defined in a similar way to dos via

dDZ =
1
∆t

∫ t1

t0
[zBZ(t) − zCZ(t)]dt, (27)

where zBZ is the depth where the entropy gradient changes sign.
The results for dDZ are shown in Fig. 5. At first glance, dDZ shows
an opposite trend in comparison to dos such that it decreases with
the Prandtl number but the dependence on Péclet and Reynolds
numbers is again strong, particularly for low PrSGS. However,
considering only the largest Pe for each Preff , dDZ is roughly con-
stant around 0.45Hp for Preff . 3.

3.3. Flow statistics and spectral distribution

A standard diagnostics in flow statistics is the probability density
function (PDF) which is defined by:∫
P(ui, z)dui = 1. (28)

The moments of the PDF carry information about the statistical
properties of the flow. The instantaneous z-dependent moments
are given by:

Mn(ui, z) =

∫
[ui(x) − ui(z)]nP(ui, z)dui. (29)

Here we study the skewness S and the kurtosisK of the velocity
field:

S =
M3

σ3
u
, K =

M4

σ4
u
, where σu = (M2)1/2. (30)

Representative PDFs of the velocity components near the sur-
face, at the middle, and near the base of the CZ from run C01
are shown in Fig. 6. The data are obtained by time-averaging
over several snapshots. The horizontal flows have zero means
and they have symmetric distributions around the mean. The

vertical flows on the other hand show a bimodal distribution
corresponding to the characteristic up- and downflow structure
of convective granulation which is particularly clear near the
surface. Similar results have been reported from a number of
earlier numerical studies in different contexts and setups (e.g.,
Brandenburg et al. 1996; Miesch et al. 2008; Hotta et al. 2015).

Figure 7 showsS andK as functions of depth from runs C01,
C1, and C10. The skewness of the horizontal flows is essentially
zero in all of the cases which is expected because no systematic
horizontal anisotropy is present. S is consistently negative and
decreasing with depth for vertical flows within the CZ. This is
indicative of a growing difference between the statistics of up-
and downflows in the deeper parts. The kurtosis indicates a nearly
Gaussian distribution with K ≈ 3 for both vertical and horizon-
tal flows near the surface (z/d ≈ 0.9). However,K increases as a
function of depth such that K ≈ 5 for ux and uy, and has a value
of greater than 10 for uz at the base of the CZ, indicating strong
non-Gaussianity. The skewness and kurtosis do not change sig-
nificantly in the CZ as a function of PrSGS. The results for S and
K are in agreement with those of Hotta et al. (2015) and similar
to the rotating spherical shell simulations of Miesch et al. (2008)
notwithstanding the horizontal anisotropy in the latter. Finally,K
reaches very high values in the overshoot regions especially for
low PrSGS; see left panel of Fig. 7. This is most likely due to the
highly intermittent turbulence which in turn is due to the limited
number of deeply penetrating plumes in these regions.

Next we study the velocity amplitudes as functions of spatial
scale from power spectra of the velocity field,

EK(k, z, t) =
1
2

∑
k

|û(k, z, t)|2, (31)

where k =
√

k2
x + k2

y is the horizontal wavenumber and the hat
denotes a two-dimensional Fourier transform. The power spectra
are computed from between 10 and 40 snapshots –depending on
the run– which are then time-averaged. Furthermore, normalisa-
tion is applied such that

ẼK(k, z) =
1

∆T

∫ T1

T0

EK(k, z, t)∑kgrid

0 EK(k, z, t)
dt, (32)

where kgrid = nxh/2 is the Nyquist scale of the horizontal grid
with nxh grid points. With this normalisation the differences
in the shape of the spectra are highlighted whereas the differ-
ences in the absolute magnitude are hidden. This is justified here
because we are currently interested in the effects of the Prandtl
number on the distribution of power as a function of spatial scale.

Representative results for PrSGS = 0.1, 1, and 10 are shown
in Fig. 8 from runs C01, C1, and C10. The differences in EK
are small and most clearly visible at high wavenumbers near the
surface and near the base of the CZ. The power at the largest
scales (k/kH < 3) is similar in all cases and the clearest differ-
ences are seen at the base of the CZ although even these features
are not particularly pronounced. It is possible that the horizontal
extent of the domain is too small to capture the largest natu-
rally excited scales because the peak of the power spectrum is
always near the box scale. The spectra show a scaling that is
consistently steeper than the Kolmogorov-Obukhov k−5/3 spec-
trum. The Bolgiano-Obukhov scaling (Bolgiano 1959; Obukhov
1959) with k−11/5 is more compatible with the data especially at
large Re. However, the inertial range even in the current high-
est resolution simulations is very limited and the conclusions
regarding scaling properties are quite uncertain. Furthermore,
there is a puzzling spread of scaling exponents from convection
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Fig. 6. Normalised PDFs of ux (left panel), uy (middle), and uz (right) from near the surface (black lines), middle (blue), and bottom (red) of the
CZ as indicated by the key for run C01 with Re = 190 and PrSGS = 0.1.

Fig. 7. Kurtosis K (solid lines) and skewness S (dashed) of the velocity components from runs C01 (PrSGS = 0.1, left panel), C1 (PrSGS = 1,
middle), and C10 (PrSGS = 10, right).

Fig. 8. Normalised power spectra of velocity from depths z = 0.85d (left panel), z = 0.49d (middle), and z = 0.13d (right) for PrSGS = 0.1 (black
lines), 1 (blue), and 10 (red) and Re = 167 . . . 190 corresponding to runs C01, C1, and C10, respectively. The insets show the low-wavenumber
part of the spectra. The dashed and dotted lines respectively indicate the Bolgiano-Obukhov k−11/5 and Kolmogorov-Obukhov k−5/3 scalings for
reference.

simulations: early studies with modest inertial ranges suggested
a k−5/3 scaling (e.g., Cattaneo et al. 1991; Brandenburg et al.
1996; Porter & Woodward 2000) whereas more recent stud-
ies (e.g., Hotta et al. 2015; Featherstone & Hindman 2016) sug-
gest clearly shallower scalings. On the other hand, power

spectra of solar surface convection suggest significantly
steeper (Yelles Chaouche et al. 2020, and references therein)
scaling.

To study the anisotropy of the flow, the power spectra of ver-
tical and horizontal velocities are defined as
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Fig. 9. Normalised power spectra of vertical (EV, solid lines) and horizontal velocities (EH, dashed) from the same depths and runs as in Fig. 8.
The inset shows low-wavenumber contributions.

Fig. 10. Spectral vertical anisotropy parameter AV(k) according to Eq. (35) from near the surface (z = 0.85d, left panel), middle (z = 0.49d,
middle), and near the bottom of the CZ (z = 0.13d, right) for the same runs as in Fig. 8.

∫ kmax

0
EV(k, z)dk =

1
2

u2
z (z), (33)∫ kmax

0
EH(k, z)dk =

1
2

[
u2

x(z) + u2
y(z)

]
. (34)

The same averaging and normalisation as above are applied here.
Representative results from the same runs as in Fig. 8 are shown
in Fig. 9. The horizontal and vertical velocity power spectra
at all depths indicate a dominance of horizontal flows at large
scales (k . 3) whereas vertical flows are dominant for larger k.
The scaling of EH is consistently steeper than the Kolmogorov-
Obukhov k−5/3 dependence.

However, the differences between runs are again small with
the exception of the bottom of the CZ (z = 0.13d) where a reduc-
tion of EH at large scales k/kH ≤ 4 for PrSGS = 0.1 is seen. The
changes in the spectra are relatively subtle and an alternative way
to study the spectral distribution of velocity is to consider the
spectral anisotropy parameter AV which is defined as (Käpylä
2019b):

AV(k, z) ≡
EH(k, z) − 2EV(k, z)

EK(k, z)
. (35)

Results for AV for the same runs as in Figs. 8 and 9 are shown
in Fig. 10. Near the surface the large scales are dominated by
horizontal flows such that AV(k) > 0 for k < 4. The large-scale

anisotropy for k/kH < 10 is almost identical for the three simu-
lations shown in Fig. 10. The run with the highest PrSGS starts to
deviate from the other two for k/kH > 10, and the two remain-
ing runs deviate for k/kH & 150. Given that the energy transport
is dominated by scales for which k/kH . 30 (see below), it is
likely that the differences of AV at large k/kH are not of great
importance. The anisotropy at the middle of the CZ is remark-
ably similar for all three cases such that significant deviations
occur only for k/kH & 100; see the middle panel of Fig. 10. The
situation changes dramatically at the base of the CZ: while AV
is essentially the same for all Prandtl numbers for k/kH > 8, the
results systematically deviate at larger scales. That is, the flow
at largest scales (k/kH = 1) continues to be horizontally domi-
nated for all Prandtl numbers but AV is decreasing monotonically
with PrSGS such the for PrSGS = 0.1, AV change of sign from
positive to negative already for k/kH > 1. This is reflecting the
stronger downflows and deeper overshooting in the low-PrSGS
regime.

Figure 11 shows normalised velocity power spectra com-
pensated by k11/5 from five runs with PrSGS = 0.1 where
the Reynolds number varies between 48 and 473. This figure
shows that the scaling of the velocity spectra for the high-
est Reynolds numbers at low PrSGS is close to or even steeper
than the Bolgiano-Obukhov k−11/5 scaling. This is particularly
clear at the middle and at the base of the CZ while no clear
scaling can be discerned near the surface. Evidence for the
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Fig. 11. Power spectra of the velocity compensated by k11/5 from near the surface (z = 0.85d, left panel), middle (z = 0.49d, middle), and near the
bottom of the CZ (z = 0.13d, right) for PrSGS = 0.1 as a function of the SGS Péclet number as indicated by the legend. The spectra are normalised
such that the contributions from k/kH = 1 coincide.

Fig. 12. Normalised Bolgiano length `B/d according to Eq. (36) from
runs C01 (black line), C1 (blue), and C10 (red).

Bolgiano-Obukhov scaling for the kinetic energy spectrum has
previously been reported from simulations Rayleigh-Bénard
convection (e.g., Calzavarini et al. 2002) as well as from corre-
sponding shell models (Brandenburg 1992). However, the gen-
erality of the results for the spectra remain in question as stated
earlier.

The Bolgiano-Obukhov scaling is expected if the Bolgiano
length is smaller than the typical turbulent length scale. In anal-
ogy with Rayleigh-Bénard convection (e.g., Calzavarini et al.
2002; Ching 2014), we define the Bolgiano length by

`B =
ε5/4

u

asε
3/4
s + aT ε

3/4
T

, (36)

where εu = 2νS2, εs = χSGS|∇s′|2, and εT = χ|∇T |2 are the hori-
zontally averaged dissipation rates of kinetic energy and entropy
fluctuations due to SGS and radiative diffusion, respectively. The
factors as = (cP/g

2)3/4 and aT = (cP/d)3/2 enter due to dimen-
sional arguments. The contribution from radiative diffusion εT is
dominant in the denominator everywhere except near the surface
where χ is very small. Representative results of `B are shown in
Fig. 12 for runs C01, C1, and C10. We find that `B is of the order
of 10−3 . . . 10−2d in the deep parts of the CZ and reaches maxi-
mum values of around 0.1d in the upper part of the CZ. Near the
surface, lB increases with PrSGS. The integral scale of turbulence

is given by

` =

∫
k−1EK(k, z)dk∫

EK(k, z)dk
. (37)

We find that ` is generally in the range 0.35 . . . 0.45d irrespec-
tive of depth. This suggests that the Bolgiano-Obukhov scal-
ing is indeed expected in the deep parts of the CZ. However,
near the surface `/`B ≈ 4 such that it is not obvious that the
Bolgiano-Obukhov scaling should appear there. This is to some
degree reflected by the simulation results where no clear power-
law scaling can be seen near the surface (cf. left panel of Fig. 11).

The current results indicate that increasing Re, and therefore
increasing Ra, does not significantly change the distribution of
velocity power in wavenumber space. This is in apparent con-
tradiction with the results of Featherstone & Hindman (2016)
who reported an increase of small-scale flow amplitudes at
the expense of large-scale power as the Rayleigh number was
increased. However, in their study the increase of the Rayleigh
number was associated with a significant change in the fraction
of the energy flux that is carried by convection because their
SGS entropy diffusion contributes to the mean energy flux; see
their Fig. 6. It also appears that when the Rayleigh number is
sufficiently large, the decrease in the large-scale power ceases
also for Featherstone & Hindman (2016); see their Fig. 3. In the
present study the convective flux is not directly influenced by the
SGS entropy diffusion and thus the current results differ qualita-
tively from those of Featherstone & Hindman (2016).

Figure 13 shows compensated power spectra of specific
entropy fluctuations from runs C01, C1, and C10. The spectra are
compensated by k11/6 which appears to be compatible with the
highest Pe cases. For PrSGS = 0.1, there is no clear inertial range
due to the low Péclet number in run C01. Runs C1 and C10,
where the Péclet number is larger the entropy fluctuations, show
roughly a k−11/6 scaling at intermediate scales near the surface
and at the middle of the CZ (top and middle panels of Fig. 13).
Near the base of the CZ, only run C10 with the highest Pe shows
signs of k−11/6 spectra. The observed scaling is steeper than those
from the Kolmogorov-Obukhov and Bolgiano-Obukhov models
that predict k−5/3 and k−7/5, respectively. Based on the current
results, it appears that the scaling of ẼS becomes progressively
shallower as Pe increases such that neither of the theoretical pre-
dictions can be ruled out at the moment. However, simulations
at even higher resolutions are needed to confirm this.
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Fig. 13. Power spectra of entropy fluctuations ẼS (k) compensated by k11/6 from near the surface (z = 0.85d, left panel), middle (z = 0.49d, middle),
and near the bottom of the CZ (z = 13d, right) for runs C01 (black lines), C1 (blue), and C10 (red). The spectra are normalised such that the
contributions from k/kH = 1 coincide.

Fig. 14. Normalised enthalpy (red), kinetic energy (blue), and convected
(black) fluxes for the SGS Prandtl numbers ranging from 0.1 to 10 as
indicated by the legend from the B set of runs with Re = 79 . . . 93.

3.4. Convective energy transport

Figure 14 shows the enthalpy, kinetic energy, and total convected
fluxes –from Eqs. (20), (21), and (24), respectively– for the runs
in set B with Re = 79 . . . 93 and 5763 grid. Remarkably, Fconv
is almost identical within the CZ in all of the runs irrespective
of the SGS Prandtl number. This indicates that the radiative flux
and hence the thermal stratification and radiative conductivity
are very similar in all of the runs. The constituents of the con-
vective flux, however, show a very different behavior: the abso-
lute values of the enthalpy and the kinetic energy fluxes increase
monotonically with decreasing PrSGS. In particular, the kinetic
energy flux more than doubles as PrSGS decreases from 10 to 0.1.
For the lowest PrSGS, the downward kinetic energy flux exceeds
Fbot near the middle of the CZ while Fenth is almost twice
Fbot. In contrast to the CZ, the convected flux in the overshoot
layer shows much larger differences between different Prandtl
numbers.

The contributions of up- and downflows to the enthalpy,
kinetic energy, and total convected flux Fconv are shown in
Fig. 15. The contributions of the upflows to Fenth and Fkin
increase monotonically as PrSGS decreases, leading to a net
increase in the convected flux F

↑

conv. The magnitudes of F
↓

enth

and F
↓

kin also increase as the SGS Prandtl number decreases

but the net F
↓

conv decreases because F
↓

enth and F
↓

kin have oppo-
site signs. Remarkably, Fenth and Fkin are almost identical above
z/d ≈ 0.9 irrespective of PrSGS, suggesting that near-surface
physics are not the cause of the differences discussed here. In
total, the up- and downflows transport on average an equal frac-
tion of Fconv for SGS Prandtl number unity. The upflows are
clearly dominant for the lowest SGS Prandtl numbers, such that
for PrSGS = 0.1 the upflows transport roughly two-thirds of the
convected flux within the CZ. An opposite, albeit weaker trend
is seen for PrSGS > 1. The results for PrSGS , 1 are thus qual-
itatively different from the case PrSGS = 1, and the difference
increases towards larger and smaller Prandtl numbers. The cur-
rent results are also in accordance with those of Cattaneo et al.
(1991) who found that, in their more turbulent cases, the contri-
bution of the downflows to Fconv diminishes. The increase in the
level of turbulence in their cases was associated with a decreas-
ing Prandtl number σ. In their simulations, the contribution of
the downflows to the convected flux is practically negligible at
σ = 0.1; see their Fig. 14d.

An important caveat of the current results is that changing
PrSGS implies also that the Péclet number is changing. There-
fore, it is necessary to test whether the observed differences are
really due to the Prandtl number and not because of a Péclet
number dependence. Such a check is shown in Fig. 16 where
the convected flux from the five simulations with PrSGS = 0.1
(A01, B01, C01, C01b, and C01c) is compared. The Reynolds
and Péclet numbers differ by an order of magnitude in this set of
runs. The differences are minor within the CZ, whereas some-
what larger deviations are seen in the depth of the overshoot
region. Nevertheless, the results are robust enough within the
parameter range explored here such that the conclusions drawn
regarding the energy fluxes remain valid. However, the current
results should still be considered with some caution as the Péclet
numbers studied thus far are still modest compared to realistic
stellar conditions.

Although the statistics of velocity and entropy fluctuations
do not show drastic changes as a function of PrSGS, the con-
vective energy transport is indeed strongly affected. In the fol-
lowing, the same procedure as in Nelson et al. (2018) is used
to study the dominant scales in the different contributions to the
convective flux. First, a low-pass filter is applied to the quantities
that enter the expressions of the fluxes such that wavenumbers
k < kmax are retained. For the enthalpy (kinetic energy) flux, this
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Fig. 15. Contributions from upflows (a) and downflows (b) on the hor-
izontally averaged convected (black lines), enthalpy (red), and kinetic
energy (blue) fluxes for the same runs as in Fig. 14.

Fig. 16. Comparison of total convected flux (black) and the contribu-
tions of the upflows (red) and downflows (blue) between runs A01, B01,
C01, C01b, and C01c with PrSGS = 0.1.

applies to the fluctuating vertical momentum flux (ρuz)′ and tem-
perature fluctuation T ′ (kinetic energy Ekin = 1

2ρu2 and vertical
velocity uz). The normalised, horizontally averaged enthalpy and
kinetic energy fluxes up to kmax are then computed according to

F̃enth(kmax, z) =
1
∆t

∫ t1

t0

 (ρuz)′(z, kmax, t)T ′(z, kmax, t)

Fenth(z, t)

 dt, (38)

F̃kin(kmax, z) =
1
∆t

∫ t1

t0

Ekin(z, kmax, t)uz(z, kmax, t)

Fkin(z, t)

 dt. (39)

Representative results for PrSGS = 0.1, 1, and 10 are shown in
Fig. 17 near the surface of the CZ. The current results indicate

Fig. 17. Spectrally decomposed, normalised enthalpy (F̃enth, solid lines)
and kinetic energy (F̃kin, dashed lines) fluxes from z/d = 0.84 for runs
C01 (red lines), C1 (black), and C10 (blue).

that for PrSGS = 0.1 the dominant contribution of the enthalpy
flux comes from larger scales than for the kinetic energy flux.
For PrSGS = 1 the situation is qualitatively unchanged but the
difference in the dominant scales is much smaller. On the other
hand, for PrSGS = 10 the behaviour is reversed although only
at relatively large wavenumbers (k/kH & 20). These results sug-
gest that while the dominant velocity scale is quite insensitive to
changes of the Prandtl number, a stronger dependence exists in
the convective energy transport.

The current results thus suggest that convection becomes less
efficient when the Prandtl number is decreased such that larger
vertical velocities are required to carry the same flux. There are
parallels between this and the Rayleigh-Bénard convection, where
the Nusselt number decreases strongly for a given Rayleigh num-
ber when Pr is decreased (Schumacher & Sreenivasan 2020, and
references therein). This means that low Prandtl number convec-
tion is very turbulent but at the same time inefficient in transport-
ing heat. The analogy to the Reyleigh-Bénard case is, however, not
complete as in the current simulations the ratio of convective to
radiative flux is almost unchanged when the SGS Prandtl number
changes. Therefore, the effects of the Prandtl number are necessar-
ily much more subtle in the present cases and there is no straight-
forward way to connect, for example, the average rms-velocity
and the Rayleigh number.

3.5. Velocity, temperature, and density fluctuations

The fact that the magnitudes of enthalpy and kinetic energy
fluxes both increase as the SGS Prandtl number decreases while
the total convected energy flux remains constant suggests a
systematic change in the velocity and temperature fluctuations
or their correlation as a function of PrSGS (for the latter, see
Brandenburg et al. 2005). The rms-fluctuations of uz for the total
velocity, upflows, and downflows are shown in Fig. 18a for runs
C01, C1, and C10. The rms vertical velocity in the bulk of the
CZ increases monotonically for both up- and downflows as PrSGS
decreases. The increase is particularly pronounced for the down-
flows, urms↓

z , which is also the main contributor to the increase in
urms

z . This reflects the decreasing filling factor of downflows with
PrSGS (see Fig. 3a) such that the downflows need to be faster due
to mass conservation.

The temperature fluctuations shown in Fig. 18b show a some-
what more complex behaviour: near the surface T ′rms increases
with PrSGS whereas in deeper parts the trend is reversed. This can
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Fig. 18. Horizontally averaged total rms vertical velocity (black lines)
and the contributions from upflows (red) and downflows (blue) (a). Cor-
responding rms temperature (b) and density (c) fluctuations normalised
by Ttop and ρtop = ρ0, respectively. Data for runs C01, C1, and C10 with
PrSGS = 0.1, 1, and 10 are shown as indicated by the legend.

be understood such that near the surface the temperature fluctu-
ations are mostly in small-scale structures such as granules and
intergranular lanes which are subject to stronger diffusion for
smaller PrSGS, resulting in smaller T ′rms on average there. In the
bulk of the CZ, T ′rms is the largest for the smallest PrSGS for both
up- and downflows. This can partly explain the dominance of
upflows in the energy transport for PrSGS = 0.1. For PrSGS = 1
and 10, T ′rms is always larger in the latter, which is due to the lower
thermal diffusivity. Finally, Fig. 18c shows the depth dependence
of the rms density fluctuations. Here a monotonic trend is seen
such that ρ′rms decreases with PrSGS.

The correlation coefficient of vertical velocity and tempera-
ture fluctuations is given by

C[uz,T ′] =
uzT ′

urms
z T ′rms

≈
Fenth

cPρurms
z T ′rms

, (40)

where Fenth = cP(ρuz)′T ′ ≈ cPρu′zT ′. The correlation coefficients
C[uz,T ′] for the total flow, and up- and dowflows for the same
runs as in Fig. 18 are shown in Fig. 19. The overall correlation
coefficient C[uz,T ′] decreases monotonically as PrSGS increases,
in agreement with Singh & Chan (1993). This trend is dominated
by the downflows where C[u↓z ,T ′↓] increases with decreasing
PrSGS while a much weaker and opposite trend is observed for
the upflows. The increasing correlation C[u↓z ,T ′↓] with decreas-
ing PrSGS explains the simultaneous strong increase in the mag-
nitude of F

↓

enth. At the same time, the correlation in the upflows

Fig. 19. Correlation coefficient C[uz,T ′] as a function of depth from
run C01 (PrSGS = 0.1, solid lines), C1 (PrSGS = 1, dashed) and C10
(PrSGS = 10, dash-dotted) for the downflows (blue), upflows (red), and
totals (black).

is much less affected by the SGS Prandtl number and the overall
increase in vertical velocity and temperature fluctuations for low
PrSGS (see, Fig. 18) explains the increased F

↑

enth in that regime.

3.6. Driving of convection

The dependence of the convective flows on the Prandtl number
raises the question of what is driving them. A primary candidate
is the entropy gradient at the surface which has indeed reported
to be Prandtl number dependent (e.g. Brandenburg et al. 2005).
A diagnostic of this is the maximum value of the superadiabatic
temperature gradient

∆∇ = ∇ − ∇ad = −
Hp

cP

ds
dz
, (41)

where ∇ = ∂ ln T/∂ ln p and ∇ad = 1 − 1/γ are the logarith-
mic and adiabatic temperature gradients, respectively. Figure 20
shows the maximum value of ∆∇ near the surface for the total
entropy as well as for the upflow and downflow regions sepa-
rately for all of the current runs. The results for max(∆∇) show
a decreasing trend as a function of Peeff and only a much weaker
dependence on Preff . The data perhaps suggest a (ln Peeff)−1

dependence. A similar decreasing trend is seen in the upflow
regions although the scatter in the data is stronger especially in
the intermediate range of Peeff . On the other hand, the data for
the downflows perhaps suggest a plateau for Peeff & 30. How-
ever, these tentative dependences are rather uncertain due to the
limited data available. Nevertheless, it appears that for approx-
imately the same Péclet number, the entropy gradient increases
with Prandtl number. This is opposite to the trend in the strength
of downflows and thus the surface entropy gradient cannot be the
dominant contribution in driving the downflows.

Next we turn to the force balance for vertical flows. The hor-
izontally averaged force density is given by

f z = ρDuz/Dt, (42)

where D/Dt = ∂/∂t − uz∂z is the vertical advective time
derivative. Representative results for the total force are shown
in Fig. 21a for runs C01, C1, and C10. The runs with SGS
Prandtl numbers 1 and 10 show a small difference near the sur-
face in that the maximum total force is slightly larger for the
lower Prandtl number. On the other hand, f z for PrSGS = 0.1
shows a markedly wider negative region in the upper part of
the CZ between 0.65 . z/d . 0.9. The force on the upflows
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Fig. 20. Maximum of the superadiabatic temperature gradient ∆∇ =
∇ − ∇ad as a function of the effective Péclet number at zsurf = 0.85d for
the total (a), in upflows (b), and in downflows (c). The colour coding
indicates Preff(zsurf).

is shown in Fig. 21b. The differences between the two higher
SGS Prandtl numbers are very small whereas the PrSGS = 0.1
case again shows a clear difference in the near-surface layers
such that the region where upflows are decelerated is signifi-
cantly wider. Remarkably, f

↑

z is in almost perfect anticorrela-
tion with the superadiabatic temperature gradient in the upflows
(∆∇↑) such that upflows are decelerated (accelerated) in unsta-
bly (stably) stratified regions. This suggests that the upflows are
not directly driven by the convective instability itself but rather
by pressure forces induced by the deeply penetrating downflows
(see also Korre et al. 2017; Käpylä et al. 2017). Finally, Fig. 21c
shows the forces for the downflows. The downward force on the
downflows is larger near the surface for PrSGS = 0.1 than in the
cases with PrSGS = 1 and 10, which explains the stronger ver-
tical velocities for low SGS Prandtl numbers. The force on the
downflows is almost in anticorrelation with the overall superadi-
abatic temperature gradient; compare the grey and black lines in
Fig. 21c3. The correlation with ∆∇↓ is clearly poorer.

3 In earlier studies of non-rotating hydrodynamic convection
(Käpylä et al. 2017; Käpylä 2019a) the total force on the downflows
was found to adhere closely to ∆∇. These analyses, however, contain
an error due to which the contribution from the viscous force is under-
estimated by a factor of between roughly 2 and 30 depending on the
depth in the CZ. Thus the agreement between ∆∇ and f

↑

z in these ear-
lier studies is poorer than reported elsewhere and is comparable to that
presented in the current study.

Fig. 21. Horizontally averaged forces for the total flow (a), upflows (b)
and downflows (c) for runs C01 (PrSGS = 0.1, solid lines), C1 (PrSGS =
1, dashed), and C10 (PrSGS = 10 dash-dotted). The blue and red lines
show the corresponding superadiabatic temperature gradients with blue
denoting negative and red positive values. The grey lines in panels b and
c indicate ∆∇ for reference.

Figure 18c showed that the density fluctuations are weakly
decreasing with PrSGS such that the increased acceleration on the
downflows cannot be explained by arguing that the matter in the
downflows is cooler and heavier in the low-PrSGS cases in com-
parison to the higher PrSGS cases. On the other hand, Fig. 19
shows that the correlation between vertical velocity and temper-
ature fluctuations increases with decreasing PrSGS which is the
decisive factor in the enhanced acceleration of downflows. A sim-
ilar enhancement of correlation is likely to carry over to other ther-
modynamic quantities as well. The exact mechanism is unclear,
but it seems plausible to assume that a process similar to the posi-
tive feedback loop between vertical flows and the buoyancy force
in the zero Prandtl number limit in Rayleigh-Bénard convection
(Spiegel 1962) is also present in the compressible case.

4. Conclusions

Convective energy transport and flow statistics are sensitive to the
SGS Prandtl number in the parameter range currently accessible
to numerical simulations. The most striking effect is the decrease
in net energy transport due to downflows with decreasing Prandtl
number. This happens because the oppositely signed enthalpy and
kinetic energy fluxes both increase in the downflows, leading to
increased cancellation (Cattaneo et al. 1991). Another effect of a
decreasing Prandtl number is the increase in the overall velocity
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which is mostly due to the increase in the downflow strength. The
stronger downflows also lead to much stronger overshooting at the
base of the CZ for lower Prandtl numbers.

On the other hand, the effects of the Prandtl number are very
subtle in the statistics of the velocity field. The clearest sys-
tematic effect is that the filling factor of downflows decreases
monotonically with decreasing SGS Prandtl number. However,
the power spectra of velocity show very small differences, apart
from the deep layers where the downflow dominance in the low-
Prandtl number regime becomes more prominent. The current
results do not indicate a decrease in the large-scale velocity
power either with decreasing Prandtl or with increasing Rayleigh
numbers. Such a decrease has been suggested to be at least a
partial solution to the convective conundrum, or the overly high
large-scale power in simulated flows (Featherstone & Hindman
2016). In the current simulations, the large-scale power is almost
unaffected, most likely because the SGS entropy diffusion does
not contribute to the mean energy flux unlike in the simulations
of Featherstone & Hindman (2016). Notably, however, the dom-
inant spatial scales of enthalpy and kinetic energy fluxes vary
systematically with PrSGS which is likely to hold the key to
understanding the changing convective dynamics.

The implications of the current results of solar and stellar
convection are difficult to assess because of the greatly differing
parameter regimes of the simulations compared to stellar CZs.
Another aspect is that the current simulations are very likely not
in an asymptotic regime such that the results show a dependence
on the Reynolds and Péclet numbers. Nevertheless, even with
these reservations, it appears likely that convection in the Sun
is quite different from that obtained from simulations in which
Pr ≈ 1. In particular, the overshooting depth can be substantially
underestimated by the current simulations. It is also unclear as to
how the Prandtl number effects manifest themselves in angular
momentum transport which has thus far only been discussed in
the Pr & 1 regime (Karak et al. 2018).

The current simulations use SGS diffusion for the entropy
fluctuations which is solely because of numerical convenience.
The use of SGS diffusion has been criticised because it is
typically not rigorously formulated and because it is possibly
affecting the resolved convective energy flux indirectly. We will
address these questions in a separate paper with simulations
where the SGS diffusion is absent.
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