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Abstract
The Λ effect describes a rotation-induced nondiffusive contribution to the Reynolds

stress. It is commonly held responsible for maintaining the observed differential

rotation of the Sun and other late-type stars. Here, the sensitivity of the Λ effect

to small-scale magnetic fields and compressibility is studied by means of forced

turbulence simulations either with anisotropic forcing in fully periodic cubes or in

density-stratified domains with isotropic forcing. Effects of small-scale magnetic

fields are studied in cases where the magnetic fields are self-consistently generated

by a small-scale dynamo. The results show that small-scale magnetic fields lead to a

quenching of the Λ effect which is milder than in cases where also a large-scale field

is present. The effect of compressibility on the Λ effect is negligible in the range of

Mach numbers from 0.015 to 0.8. Density stratification induces a marked anisotropy

in the turbulence and a vertical Λ effect if the forcing scale is roughly two times

larger than the density scale height.

K E Y W O R D
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1 INTRODUCTION

Solar and stellar differential rotation is thought to arise due to
the interaction of density-stratified convective turbulence and
global rotation of the star (e.g., Rüdiger 1980; Rüdiger 1989;
Rüdiger et al. 2013). While turbulence is often associated with
only enhanced diffusion, several nondiffusive effects have
also been discovered. Arguably, the most well-known of these
in the astrophysical context is the 𝛼 effect which leads to the
generation of large-scale magnetic fields in helical turbulence
(Steenbeck et al. 1966). In the hydrodynamic (HD) context, a
nondiffusive contribution to the Reynolds stress, also known
as the Λ effect, is thought to be crucial for the maintenance
of stellar differential rotation (e.g., Kichatinov & Rüdiger
1993; Kitchatinov & Rüdiger 1995; Kitchatinov & Rüdi-
ger 2005; Rüdiger 1980). Considerable observational (e.g.,
Rüdiger et al. 2014, and references therein) and numerical

(e.g., Käpylä 2019; Käpylä & Brandenburg 2008; Pulkki-
nen et al. 1993; Rüdiger et al. 2005) evidence support the
existence of the Λ effect in flows akin to those in stellar con-
vection zones. The Λ effect occurs in rotating anisotropic
turbulence which means that angular momentum transport
in accretion disks is also likely affected by it (e.g., Käpylä
et al. 2010; Snellman et al. 2009). Other nondiffusive HD
effects include the anisotropic kinetic alpha effect (e.g., Frisch
et al. 1987; Käpylä et al. 2018) and the inhomogeneous helic-
ity effect (Yokoi & Brandenburg 2016), but their role in
the maintenance of stellar differential rotation is likely to be
subdominant to the Λ effect.

Numerical simulations of magnetohydrodynamic (MHD)
convection in spherical coordinates have reached sufficient
spatial resolution that allows the excitation of small-scale
dynamo action (e.g., Hotta et al. 2014; Käpylä et al. 2017;
Nelson et al. 2013). The study of Käpylä et al. (2017) showed
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that differential rotation in simulations is strongly quenched
at the highest magnetic Reynolds numbers where an efficient
small-scale dynamo is excited. Furthermore, the turbulent
Reynolds and Maxwell stresses were found to have similar
spatial distributions and magnitudes but opposite signs. These
findings can be interpreted as magnetic quenching of the Λ
effect.

In a subsequent study (Käpylä 2019), the effect of
large-scale magnetic fields on the Λ effect was studied. These
results show that the Λ effect is significantly quenched when
the large-scale magnetic field reaches a substantial fraction
of the equipartition strength. However, imposing a large-scale
field will also induce small-scale fields due to tangling by the
turbulent motions and it is not possible to disentangle the two
contributions. Here, this caveat is avoided by self-consistent
generation of small-scale magnetic fields by a small-scale
dynamo in a setup where no simultaneous large-scale dynamo
is present.

While the mean-field theory of the Λ effect is derived
under the assumption of incompressibility, the numerical sim-
ulations used to compute the coefficients are most often fully
compressible (e.g., Käpylä et al. 2004; Käpylä & Brandenburg
2008; Pulkkinen et al. 1993). Although the Mach numbers in
these studies are still clearly subsonic, the effects of compress-
ibility have not been studied in detail. Here, such an effort
is undertaken with a controlled set of simulations where the
minimal ingredients (rotation and anisotropic turbulence) for
the Λ effect are included while the Mach number is varied.

Another aspect that has not received much attention is
the contribution of density stratification to the anisotropy of
turbulence (see, however Brandenburg et al. 2012) and the
resulting Λ effect in rotating cases. Isolating these effects in
convection is not possible because the forcing due to the con-
vective instability is in itself highly anisotropic. Here this
aspect is studied with isothermal but density stratified setups
where the turbulence is driven by isotropic forcing and where
the convective instability is absent.

2 THE MODEL

The model is the same as that used in Käpylä & Brandenburg
(2008) and Käpylä (2019), except in cases where gravity and
density stratification are included.

2.1 Basic equations
Compressible HD or MHD turbulent flow in a fully peri-
odic cube is modeled. An isothermal equation of state with
𝑝 = 𝜌𝑐2

s , where p is the pressure and cs is the constant speed
of sound, is assumed. The following set of MHD equations is
solved:

𝜕A
𝜕𝑡

= U × B − 𝜂𝜇0J, (1)

𝐷ln𝜌

𝐷𝑡
= −𝛁 ⋅ U, (2)

𝐷U
𝐷𝑡

= g − 𝑐2
s 𝛁 ln𝜌 − 2 𝛀 × U + Fvisc + Fforce, (3)

where A is the magnetic vector potential, U is the fluid
velocity, B = 𝛁 ×A is the magnetic field, J = 𝜇−1

0 𝛁×B is
the current density, 𝜂 is the magnetic diffusivity, 𝜇0 is the
permeability of vacuum, 𝜌 is the density, D/Dt = 𝜕/𝜕t−U ⋅𝛁
is the advective time derivative, g = (0, 0,− g) is the accel-
eration due to gravity, 𝛀 is the rotation vector, and Fvisc

and Fforce describe the viscous force and external forcing,
respectively.

The viscous force is given by

Fvisc = 𝜈
(
∇2U + 1

3
𝛁𝛁 ⋅U + 2S ⋅𝛁 ln𝜌

)
, (4)

where 𝜈 is the kinematic viscosity and

S𝑖𝑗 =
1
2

(
𝜕𝑈𝑖

𝜕𝑥𝑗

+
𝜕𝑈𝑗

𝜕𝑥𝑖

)
− 1

3
𝛿𝑖𝑗

𝜕𝑈𝑘

𝜕𝑥𝑘

, (5)

is the traceless rate of strain tensor.
The forcing term on the rhs of Equation (2) is given by

Fforce (x, 𝑡) = 𝑅𝑒
{

N ⋅ f k{𝑡} exp
[
ik [𝑡] ⋅ x − i𝜙 [𝑡]

]}
, (6)

where x = (x, y, z), N = fcs(kcs/𝛿t)1/2 is a normalization fac-
tor, f contains the dimensionless amplitudes of the forcing,
k = | k|, 𝛿t is the length of the time step, and – 𝜋 <𝜙(t)<𝜋

is a random delta–correlated phase. The vector f k describes
nonhelical transversal waves, with

f k = k × ê√
k2 − (k ⋅ ê)2

, (7)

where ê is an arbitrary unit vector and where the wavenumber
k is randomly chosen at every time step. The Pencil Code1

was used to perform the simulations.

2.2 Units, system parameters,
and boundary conditions
The units of length, time, density, and magnetic field are

[𝑥] = 𝑘−1
1 , [𝑡] = (𝑐s𝑘1)−1, [𝜌] = 𝜌0, [𝐵] =

√
𝜇0𝜌0𝑐𝑠, (8)

where k1 is the wavenumber corresponding to the scale of the
domain and 𝜌0 is the initially uniform value of density. The

1http://github.com/pencil-code
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forcing amplitude fij is given by

f𝑖𝑗 = 𝑓0(𝛿𝑖𝑗 + 𝛿𝑖𝑧cos2Θk𝑓1∕𝑓0), (9)

where f 0 and f 1 are the amplitudes of the isotropic and
anisotropic parts, respectively, 𝛿ij is the Kronecker delta, and
Θk is the angle between ê𝑧 and k. The forcing wavenumber is
chosen from a narrow range around a predefined wavenum-
ber kf. The Mach number of the flow is varied by adjusting
the sound speed cs and the forcing amplitudes f 0 and f 1.

The rotation vector is given by 𝛀 = Ω0(−sin 𝜃, 0, cos 𝜃)T,
where 𝜃 is the angle with the vertical (z) direction. Viscosity
and rotation can be combined into the Taylor number

Ta =
4Ω2

0𝐿
4
d

𝜈2
, (10)

where Ld = 2𝜋/k1 corresponds to the size of the computational
domain. Furthermore, in the MHD cases the magnetic Prandtl
number

Pm = 𝜈

𝜂
, (11)

is an additional system parameter. The density scale height
𝐻𝜌 = 𝑐2

s ∕𝑔 describes the stratification in cases with g≠ 0.
In cases with g = 0 the system is fully periodic. When

g≠ 0, impenetrable stress-free boundary conditions corre-
sponding to:

𝑈𝑧 =
𝜕𝑈𝑥

𝜕𝑧
=

𝜕𝑈𝑦

𝜕𝑧
= 0 (12)

are enforced at the vertical (z) boundaries.

2.3 Diagnostics quantities
The following quantities are outcomes of the simulations that
can only be determined a posteriori. The fluid and magnetic
Reynolds numbers are given by

Re = 𝑢rms

𝜈𝑘f
, ReM = 𝑢rms

𝜂𝑘f
. (13)

The rotational influence on the flow is quantified by the
Coriolis number based on the forcing scale

Ω⋆ = 2Ω0𝓁
𝑢rms

, (14)

where 𝓁 = Ldk1/kf = 2𝜋/kf. The Mach number is given by

Ma = 𝑢rms

𝑐s
. (15)

The magnetic field strength is given in terms of the
equipartition value

𝐵eq = (𝜇0𝜌U2)1∕2. (16)

Finally, the parameter

𝐴V =
𝑄𝑥𝑥 +𝑄𝑦𝑦 − 2𝑄𝑧𝑧

𝑢2
rms

, (17)

characterizes vertical anisotropy of turbulence.
The density stratification is quantified by the ratio of the

densities at the top and bottom of the domain, Δ𝜌 = 𝜌𝑧bot
∕𝜌𝑧top

where zbotk1 = −𝜋 and ztopk1 = 𝜋.

2.4 Data analysis
The coefficients pertaining to the Λ effect were extracted by
fitting the latitudinal profiles of the off-diagonal Reynolds
stresses with the same procedure as in Käpylä (2019). The
Reynolds stress is given by 𝑄𝑖𝑗 = 𝑢𝑖𝑢𝑗 where the overline
denotes horizontal averaging and where u = U − U is the
fluctuating velocity. In the homogeneous cases Sets SSD
and MA an additional z-averaging is performed. The fitting
procedure assumes that the off-diagonal Reynolds stresses
are solely generated by the Λ effect and that they can be
represented as

𝑄𝑥𝑦 = 𝜈tΩ0, (18)

𝑄𝑦𝑧 = 𝜈tΩ0 , (19)

𝑄𝑥𝑧 = 𝜈tΩ0, (20)

where 𝜈t = 2

15
𝑢rms𝓁 is an estimate of the turbulent viscosity,

 = 𝐻 cos 𝜃, (21)

 = 𝑉 sin 𝜃, (22)

 = 𝑀 sin 𝜃 cos 𝜃, (23)

and
𝐻 = 𝐻 (1)sin2 𝜃 +𝐻 (2)sin4 𝜃, (24)

𝑉 = 𝑉 (0) + 𝑉 (1)sin2 𝜃 + 𝑉 (2)sin4 𝜃, (25)

𝑀 = 𝑀 (0) +𝑀 (1)sin2 𝜃 +𝑀 (2)sin4 𝜃. (26)

The expansions can in principle contain an arbitrary num-
ber of higher powers of sin2𝜃 but here the simulations were
made in such a regime that adding higher order contributions
to the coefficients does not yield a significantly improved fit
(see Käpylä 2019).

Error estimates were computed by dividing the time series
in three parts and averaging over each part. The greatest devi-
ation of these from the average over the full data set was taken
to represent the error.

3 RESULTS

Three sets of simulations were made to study the effects
of small-scale magnetic fields (Set SSD, Table 1), Mach
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T A B L E 1 Summary of the SSD simulations

Set Pm f 0 f 1/f 0 Re ReM 𝒃̃rms Grid

SSD1 2.0 10–16 4.4.104 14 27 0.10 1443

SSD2 2.5 8.4–4 49 14 36 0.21 1443

SSD3 5.0 2.10–3 19 14 68 0.39 2883

SSD3 10 3.3.10–3 10 14 135 0.52 2883

Note: Each set consists of 10 runs where 𝜃 is varied in steps of 10◦. All runs have

𝑘̃f = 𝑘f∕𝑘1 = 10, Ta = 6.2 ⋅ 107, Δ𝜌 = 1, cs = 3, Ω⋆ = 0.9, Ma = 0.05, and AV = − 0.5.

T A B L E 2 Summary of the MA simulations

Set cs f 0 f 1/f 0 Ma
MA1 0.2 0.13 19 0.80

MA2 0.5 0.03 19 0.31

MA3 1 0.01 19 0.15

MA4 2 4.10–3 19 0.08

MA5 3 2.10–3 19 0.05

MA6 5 9.10–4 19 0.03

MA7 10 3.10–4 19 0.015

Note: Grid resolution 2883, 𝑘̃f = 10, Ta = 6.2 ⋅ 107, Δ𝜌 = 1, 𝜃 = 50◦,

Re = 15, Ω⋆ = 0.8, and AV = − 0.4.

number (Set MA, Table 2), and density stratification (Set
STR, Table 3). In Sets SSD and MA the system is homoge-
neous and anisotropically forced while in Set STR the forcing
is isotropic and a strong density stratification is present. Visu-
alizations of typical flow patterns for three representative runs
are shown in Figure 1. A somewhat surprising result is that
the presence of strong density stratification is not clearly vis-
ible from the flow patterns, compare the left and right panels
of Figure 1.

3.1 Anisotropy of turbulence
Figure 2 shows the power spectra of the velocity from Run
MA7. The power peaks near the forcing wavenumber for the
total and vertical velocity. The peaks at the overtones of the
forcing wavenumber arise because in the anisotropic case
the forcing is no longer solenoidal. The spectrum is clearly
steeper than the Kolmogorov (1941) (hereafter K41) – 5/3
prediction. This is most likely due to the insufficient scale
separation between the forcing and viscous scales which does

not allow the formation of an inertial range. Indeed, even the
highest resolution simulations up to date with 81923 grid res-
olution are able recover only a rather modest well-defined
inertial range (Iyer et al. 2017). The viscous scale is now
well resolved due to the relatively modest Reynolds number
(Re≈ 15) in the current simulations. It is also evident that the
turbulence is anisotropic at all scales all the way down to the
grid scale, see the red, blue, and yellow curves in Figure 2.
This is quantified by a spectral analogy of the anisotropy
parameter:

𝐴V(𝑘) =
𝐸𝑥(𝑘) + 𝐸𝑦(𝑘) − 2𝐸𝑧(𝑘)

𝐸K(𝑘)
, (27)

where EK(k) is the power spectrum of the total velocity and
Ei(k) are the power spectra of the individual velocity compo-
nents. A representative result for AV(k) is shown in the inset of
Figure 2 for Run MA7. AV(k) has a minimum at k = kf which
is due to the fact that the forcing mainly puts energy in the z
component of the velocity in this case.

While AV(k) is mostly negative for large scales, it grad-
ually increases and peaks around 0.5 for 𝑘̃ ≈ 100. The fact
that the anisotropy survives to the smallest resolved scales
is in apparent disagreement with one of the cornerstones of
the K41 theory which assumes that the turbulence is fully
isotropic at small enough scales. However, the current sim-
ulations operate in a very modest Reynolds number regime
which cannot be directly compared with the K41 theory which
formally applies to fully developed turbulence at very high Re.

In addition to using explicitly anisotropic forcing, setups
where anisotropy arises naturally due to gravity and density

T A B L E 3 Summary of the STR simulations

Run 𝒌̃f 𝓵/H𝝆 f 0[10−3] Ta[105] 𝛀⋆ AV

STR1* 1.5 4.5 4.7 0.39 0.6… 1.3 –0.38… 0.90

STR2 3 2.2 4.8 6.2 0.5… 1.4 –0.08… 0.57

STR3 5 1.4 4.9 39 0.5… 1.2 –0.04… 0.22

STR4* 10 0.7 5.5 620 0.6… 1.0 –0.01… 0.07

Note: Grid resolution 2883, cs = 3, f 1 = 0, H𝜌k1 = 9/10, Δ𝜌 = 103, and Re = 15. The values of Ω⋆ and AV indicate

the extrema from the range |z|< 9𝜋/10. The starred runs were repeated at the same colatitudes as the SSD sets.
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F I G U R E 1 Vertical velocity Uz near the periphery of the domain and streamlines of the flow from Runs MA5 (left), STR1 (middle), and

STR4 (right)

F I G U R E 2 Power spectra of the total velocity (black), and its x
(blue), y (yellow), and z (red) components. The inset show the spectral

anisotropy parameter AV(k) according to Equation (27) for Run MA7

stratification are studied in Set STR. By virtue of the isother-
mal equation of state this setup is characterized by a constant
density scale height 𝐻𝜌 = 𝑐2

s ∕𝑔 = 9∕10 such that simulation
domain contains seven scale heights and a density contrastΔ𝜌

of more than a thousand. Although a modest resolution of 288
grid points was used, each scale height is covered by more
than 40 grid points. This differs from the case of convection
where the density (and pressure) scale height varies strongly
as a function of depth and imposes much more restrictive
constraints on the grid size (see, e.g., Käpylä et al. 2016).

Similar setups, albeit with somewhat lower stratification,
were used in an earlier study by Brandenburg et al. (2012).
They showed that turbulence anisotropy remains small when
isotropic forcing is used unless the forcing scale is larger
than the density scale height. This is confirmed by the cur-
rent simulations where the scale separation ratio, quantified
by the ratio of the forcing and system scales 𝑘̃f = 𝑘f∕𝑘1, is
varied between 1.5 and 10, see Figure 3 and Table 3 where a

F I G U R E 3 Anisotropy parameter AV(z) from the runs in Set

STR with varying 𝑘̃f

z-dependent variant of Equation (17) has been used. The den-
sity stratification-induced anisotropy is almost non-existent in
the bulk of the domain in the case of the largest scale separa-
tion 𝑘̃f = 10 or 𝓁/H𝜌 = 0.7. The stress-free and impenetrable
boundary conditions enforce uz = 0 and lead to AV = 1 at
the vertical boundaries. In the cases with poorer scale sepa-
ration or larger 𝓁/H𝜌, AV tends to become more positive in
the deep parts and obtains negative values near the surface.
For the poorest scale separation (Run STR1, 𝓁/H𝜌 = 4.5) the
magnitude of the anisotropy is comparable to typical values
achieved with anisotropic forcing in Sets SSD and MA.

3.2 𝚲 effect
3.2.1 Small-scale magnetic fields
Testing the dependence of purely small-scale magnetic fields
is possible with the current homogeneous setups in cases
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F I G U R E 4 Coefficients V (i) (top), H(i) (middle), and M(i)

(bottom) as functions of the normalized magnetic field strength

𝑏̃rms = 𝐵rms∕𝐵eq from Sets SSD1–4. The thin dashed lines show the

corresponding quantities from runs with an imposed vertical field from

Käpylä (2019)

where the magnetic Reynolds number exceeds that of the crit-
ical value for the excitation of a small-scale dynamo. Owing
to the absence of inhomogeneities, large-scale shear or helic-
ity, no large-scale magnetic fields are expected to develop.
A limited range of magnetic field strengths has been studied
in the Set SSD, see Table 1. Run SSD1 with ReM = 27 cor-
responds to a slightly supercritical case whereas Run SSD4
corresponds to the highest ReM (≈135) that can be resolved
with the adopted grid resolution. The saturation level 𝑏̃rms =
𝐵rms∕𝐵eq, where Brms is the rms-value of the magnetic field,
increases from roughly 10 to 50 per cent of the equipartition
value in this range. In practice the characteristics of the flow,
that is the Reynolds and Coriolis numbers and the degree of
anisotropy, were kept fixed in all runs by adjusting f 0 and f 1

while ReM was varied by changing Pm.
The results for the Λ coefficients corresponding to

Equations (24) to (26) from Sets SSD1–4 are shown in
Figure 4. All of the coefficients are quenched as the
small-scale magnetic fields increase: the values for 𝑏̃rms ≈ 0.5

F I G U R E 5 Off-diagonal Reynolds stresses Qxy (black), Qxz

(red), and Qyz (blue) as functions of Mach number from Set MA, see

Table 2

are typically roughly half of their HD values. It is also evident
that the quenching as a function of pure small-scale fields is
weaker than that in the cases where an imposed large-scale
vertical field is present, see the dashed lines in Figure 4 for
the corresponding data from Käpylä (2019).

3.2.2 Dependence on Mach number
Although the Mach numbers in the foregoing studies (Käpylä
2019; Käpylä & Brandenburg 2008) were typically rela-
tively low ((0.1)), it cannot be ruled out that a contribution
due to compressibility is present. Furthermore, results from
low-Reynolds number shear flows (Rogachevskii et al. 2011)
suggest that compressibility significantly affects turbulent
pumping for Ma≳ 0.1.

Results for the Mach number dependence from Set MA
where Ω⋆ = 0.8, AV = − 0.4, and Re = 15 are kept fixed are
shown in Figure 5. The range of Mach numbers spans from
0.015 to 0.8. Only the vertical stress Qyz for Ma≈ 0.8 is sta-
tistically significantly different from the values obtained for
lower Ma and even there the change is only on the order of
10%. Temporal fluctuations of Qxz increase, manifested by the
drastically increased error estimates, as a function of Ma but
the time-averaged values for all runs are still consistent with
a Ma-independent value.

3.2.3 Dependence on density stratification
In the foregoing analysis theΛ effect resulted from the forcing
that was designed to be anisotropic. While this is the case also
in natural convection, a background density stratification also
leads to anisotropy and should hence support a Λ effect. This
is indeed predicted by analytic theories (e.g. Kitchatinov &
Rüdiger 2005; Pipin & Kosovichev 2018). Here this scenario
is tested with a density-stratified setup with isotropic forcing
in the Set STR, see Table 3.
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F I G U R E 6 Vertical Reynolds stress Qyz normalized by the

squared rms-velocity 𝑢2
rms(z) in density-stratified runs with varying 𝓁/H𝜌

The simulations considered here have Ω⋆ ≈ 0.8 which is
close to the Coriolis number where the Reynolds stresses
obtain a maximum in Käpylä (2019). Furthermore, the sim-
ulation domain is situated at the equator at 𝜃 = 90◦ where
only the vertical Reynolds stress Qyz is non-zero. In order
to isolate the contribution relevant for the Λ effect, the hor-
izontally averaged horizontal mean flows 𝑈𝑥 and 𝑈𝑦 are
artificially removed from the solution similarly as in Rüdiger
et al. (2019).

The results for the vertical stress Qyz are shown in Figure 6.
The stress is positive everywhere even in the near-surface
regions where AV < 0. The results indicate that the scale sep-
aration ratio plays an important role for the density-induced
anisotropy and consequently for the associated Λ effect: both
are substantial in the case of large-scale forcing and tend to
approach zero when 𝑘̃f increases. The values of Qyz are of
the order of a few per cent of 𝑢2

rms for 𝓁/H𝜌 = 4.5 whereas
for 𝓁/H𝜌 = 0.7 the effect is no longer statistically signifi-
cant at the equator. Figure 7a shows the normalized vertical
stress 𝑄̃yz from seven latitudes for the STR4 runs. The maxi-
mal values are generally on the order of 1–2% of the squared
rms-velocity. In this set the maximum value is obtained at
𝜃 = 45◦ and only very small values are obtained at the equa-
tor (𝜃 = 90◦), see Figure 7b. This, however, depends on the
scale separation ratio because for a corresponding set with
𝓁/H𝜌 = 4.5, Qyz is consistent with a monotonic increase
toward the equator. In all of these runs the sign of AV differs
from the sign of Qyz. The mismatch of the signs of Qyz and
AV also suggests that non-locality can play a significant role
when the scale separation ratio is small.

Another contribution to the Λ effect due to a vertical gra-
dient of the Coriolis number was discussed recently by Pipin
& Kosovichev (2018). However, this effect is relevant only
for large Coriolis numbers and thus not applicable here. Fur-
thermore, the local Coriolis number Co= 2Ω0𝓁/urms(z) varies
by a factor between two and three in the current simulations

F I G U R E 7 (a) Normalized vertical Reynolds stress Qyz as a

function of height from runs with 𝓁/H𝜌 = 0.7 and Ω⋆ = 0.8 from

different colatitudes as indicated by the legend. (b) 𝑄̃yz from z k1 = 2 as

functions of 𝜃 from two sets with 𝓁/H𝜌 = 0.7 (black) and 𝓁/H𝜌 = 4.5

(blue). The curves show best fits according to Equation (25) with

V (0) = 0.011, V (1) = 0.027, V (2) = −0.036 for 𝓁/H𝜌 = 0.7 and

V (0) = 0.010 for 𝓁/H𝜌 = 4.5

(see the sixth column of Table 3) which is mild in compari-
son to the variation of four orders of magnitude in the solar
convection zone as considered by Pipin & Kosovichev (2018).

4 CONCLUSIONS

The effects of small-scale magnetic fields, compressibility
and background density stratification on the Λ effect were
studied with numerical simulations of forced turbulence with
an isothermal equation of state.

The small-scale magnetic fields generated by a small-scale
dynamo lead to a significantly milder quenching of the
Λ effect in comparison to cases where also a uniform
large-scale field is imposed (see, e.g., Käpylä 2019). Thus
is appears that the small-scale dynamo alone could not
explain the severely quenched differential rotation in recent
semi-global convection simulations (Käpylä et al. 2017). It
is also conceivable that other MHD instabilities, such as
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the magnetorotational instability (e.g., Masada 2011), can be
excited in the high-resolution convection simulations, leading
to repercussions for differential rotation.

Another aspect that has hitherto received little attention is
the Mach number dependence of the Λ effect although most
numerical studies of the subject operate in a fully compress-
ible regime (e.g. Käpylä 2019; Käpylä & Brandenburg 2008).
The current results indicate that while the fluctuations of the
Λ coefficients tend to increase with Ma, the mean values
are consistent with a Ma-independent value at least until
Ma≈ 0.8. Thus the effects of compressibility have most likely
not had a significant contribution to the results regarding the
Λ effect in the previous numerical studies.

In the mean-field-theoretical treatment the Λ effect has
distinct contributions from the anisotropy of turbulence and
from background density stratification. The former has been
modeled by an anisotropic forcing in homogeneous and fully
periodic setups (e.g., Käpylä 2019) while the latter requires a
mean density gradient and inevitably leads to inhomogeneity.
The latter setup was studied with a set of strongly strati-
fied simulations where turbulence was driven by isotropic
forcing. Thus the anisotropy of the turbulence was induced
by the density stratification. The current results indicate that
the anisotropy is weak in cases where the forcing scale is
smaller or comparable with the density scale height. The ver-
tical velocities are suppressed (enhanced) over the horizontal
components in the deep (near-surface) parts of the simula-
tions. The vertical Reynolds stress and hence the Λ effect are,
however, positive everywhere.

These results suggest an opposite sign of the vertical Λ
effect due to the density gradient in comparison to contribu-
tion from the vertically dominated homogeneous turbulence
at a comparable Coriolis number. Further studies involving
more realistic flows (e.g., convection) are needed to study the
relevance of these findings for solar and stellar differential
rotation.
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