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We present results from compressible Cartesian convection simulations with and without
imposed shear. In the former case the dynamo is expected to be of a2O type, which is generally
expected to be relevant for the Sun, whereas the latter case refers to a2 dynamos that are more
likely to occur in more rapidly rotating stars whose differential rotation is small. We perform a
parameter study where the shear flow and the rotational influence are varied to probe the
relative importance of both types of dynamos. Oscillatory solutions are preferred both in the
kinematic and saturated regimes when the negative ratio of shear to rotation rates, q��S/O, is
between 1.5 and 2, i.e. when shear and rotation are of comparable strengths. Other regions of
oscillatory solutions are found with small values of q, i.e. when shear is weak in comparison to
rotation, and in the regime of large negative qs, when shear is very strong in comparison
to rotation. However, exceptions to these rules also appear so that for a given ratio of shear to
rotation, solutions are non-oscillatory for small and large shear, but oscillatory in the
intermediate range. Changing the boundary conditions from vertical field to perfect conductor
ones changes the dynamo mode from oscillatory to quasi-steady. Furthermore, in many cases
an oscillatory solution exists only in the kinematic regime whereas in the nonlinear stage the
mean fields are stationary. However, the cases with rotation and no shear are always oscillatory
in the parameter range studied here and the dynamo mode does not depend on the magnetic
boundary conditions. The strengths of total and large-scale components of the magnetic field in
the saturated state, however, are sensitive to the chosen boundary conditions.

Keywords: Solar dynamo; Convection; Turbulence

1. Introduction

The solar magnetic cycle is commonly thought to be a manifestation of an oscillatory

large-scale dynamo operating within or just below the convection zone

(e.g. Ossendrijver 2003). A possible origin of the solar magnetic fields is the turbulent

dynamo mechanism, where helical small-scale fluid motions and large-scale

shear sustain the magnetic field (e.g. Moffatt 1978, Krause and Rädler 1980,
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Rüdiger and Hollerbach 2004). According to mean-field theory, turbulent stratified

convection together with global rotation of the Sun lead to an a effect (Steenbeck et al.

1966) and large-scale differential rotation (e.g. Rüdiger 1989). Their combined effect

constitutes the aO-dynamo, which often yields oscillatory solutions (e.g. Parker 1955,

Steenbeck and Krause 1969).
However, reproducing the solar cycle with direct numerical simulations still remains

challenging (e.g. Miesch and Toomre 2009, Käpylä 2011). Early spherical simulations

were indeed able to achieve oscillatory large-scale fields that propagate toward the poles

(Gilman 1983, Glatzmaier 1985). Similar results have been confirmed by a number of

recent simulations in spherical shells (Brown et al. 2010, 2011a, Ghizaru et al. 2010,

Racine et al. 2011) as well as in wedges of spherical shells (Käpylä et al. 2010d). Recent

simulations in wedges have also yielded equatorward migration (Käpylä et al. 2012).

Simpler Cartesian models with rotating stratified convection were less successful as only

small-scale fields were seen (Nordlund et al. 1992, Brandenburg et al. 1996). Only when

a shear flow was added (Käpylä et al. 2008, Hughes and Proctor 2009) or rapid enough

rotation was used (Jones and Roberts 2000, Rotvig and Jones 2002, Käpylä et al.

2009b), large-scale fields were obtained. Even in the cases with imposed shear, no

oscillatory solutions were seen although the necessary prerequisites, helical turbulence

and shear were present. However, these are the aspects that depend critically on the

boundary conditions. Indeed, (Käpylä et al. 2009c) have presented mean-field

calculations of the associated convection simulations that agree with each other not

only qualitatively in that both are non-oscillatory, but they also agree quantitatively as

far as their excitation condition is concerned.
Here we extend previous studies on large-scale dynamos due to turbulent convection

in Cartesian geometry (Käpylä et al. 2008, 2009b) to cover a larger parameter space and

explore more thoroughly the effects of boundary conditions on the solutions. We

present runs with imposed shear and find that oscillatory solutions can be found in a

limited part of the parameter range studied. We also report on rigidly rotating runs

where oscillatory a2-dynamos are observed.

2. Model

Our model setup is the same as that of Käpylä et al. (2008, 2009b). A rectangular

portion of a star is represented by a box situated at colatitude �. The dimensions of the

computational domain are (Lx,Ly,Lz)¼ (4, 4, 2)d, where d is the depth of the

convectively unstable layer, which is also used as the unit of length. The box is divided

into three layers: an upper cooling layer, a convectively unstable layer, and a stable

overshoot layer (see below). The following equations for compressible magnetohydro-

dynamics are solved:

DA

Dt
¼ �SAyx̂� ðJUÞ

TA� ��0J, ð1Þ

D ln �

Dt
¼ �JEU, ð2Þ

2 P.J. Käpylä et al.
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DU

Dt
¼ �SUxŷ�

1

�
Jpþ g� 2X0 �Uþ

1

�
J� Bþ

1

�
JE2��S, ð3Þ

De

Dt
¼ �

p

�
JEUþ

1

�
JEKJTþ 2�S2

þ
�0�

�
J2 �

e� e0
�ðzÞ

, ð4Þ

where D=Dt ¼ @=@tþ ðUþU0ÞEJ is the advective derivative with respect to the total
(turbulent plus shear) flow, U0 ¼ ð0,Sx, 0Þ is the imposed large-scale shear flow, A is the
magnetic vector potential, B¼J�A is the magnetic field, J¼J�B/�0 is the current
density, �0 is the magnetic permeability, � and � are the magnetic diffusivity and
kinematic viscosity, respectively, K is the heat conductivity, � is the density, U is the
velocity, g ¼ �gẑ is the gravitational acceleration, and X0¼O0(�sin �, 0, cos �) is
the rotation vector. The fluid obeys an ideal gas law p¼ �e(�� 1), where p and e are the
pressure and internal energy, respectively, and � ¼ cP/cV¼ 5/3 is the ratio of specific
heats at constant pressure and volume, respectively. The specific internal energy per
unit mass is related to the temperature via e¼ cVT. The traceless rate of strain tensor S
is given by

Sij ¼
1
2ðUi,j þUj,iÞ �

1
3	ijJEU: ð5Þ

The last term of equation (4) describes cooling at the top of the domain. Here, �(z) is a
cooling time with a profile smoothly connecting the upper cooling layer and the
convectively unstable layer below, where ��1(z)! 0. Let us note that equation (1) is
here written in the fully advective gauge, but in practice, to avoid excessive buildup of
gradient contributions to A (Candelaresi et al. 2011), it is solved just in the shearing-
advective gauge (see Hubbard and Brandenburg (2011) for details).

The positions of the bottom of the box, bottom and top of the convectively unstable
layer, and the top of the box are given, respectively, by (z1, z2, z3, z4)¼
(�0.85, 0, 1, 1.15)d. Initially the stratification is piecewise polytropic with polytropic
indices (m1,m2,m3)¼ (3, 1, 1), which leads to a convectively unstable layer above a
stable layer at the bottom of the domain and an isothermal cooling layer at the top. All
simulations with rotation use �¼ 0, corresponding to the north pole. Our initial
stratification is given by the associated hydrostatic equilibrium solution (Brandenburg
et al. 1996), where velocity and magnetic fields are perturbed with the Gaussian noise of
low amplitude.

2.1. Nondimensional quantities and parameters

Dimensionless quantities are obtained by setting

d ¼ g ¼ �0 ¼ cP ¼ �0 ¼ 1, ð6Þ

where �0 is the initial density at z2. The units of length, time, velocity, density, entropy,
and magnetic field are

½x� ¼ d, ½t� ¼
ffiffiffiffiffiffiffiffi
d=g

p
, ½U� ¼

ffiffiffiffiffi
dg

p
, ½�� ¼ �0, ½s� ¼ cP, ½B� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dg�0�0

p
: ð7Þ

The equipartition magnetic field is defined by

Beq � h�0�U
2i1=2, ð8Þ

Oscillatory large-scale dynamos from convection simulations 3
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where angle brackets denote volume averaging. We define the fluid and magnetic
Prandtl numbers and the Rayleigh number as

Pr ¼
�


0
, Pm ¼

�

�
, Ra ¼

gd4

�
0

�
�

1

cP

ds

dz

�
0

, ð9Þ

where 
0¼K/(�mcP) is the thermal diffusivity and �m is the density in the middle of the
convectively unstable layer, zm¼ z3� z2. The entropy gradient, measured at zm in the
non-convecting hydrostatic state, is given by�

�
1

cP

ds

dz

�
0

¼
r � rad

HP
, ð10Þ

where r�rad is the superadiabatic temperature gradient with rad¼ 1� 1/�,
r ¼ ð@ lnT=@ ln pÞzm, where HP is the pressure scale height. The degree of stratification
is determined by the parameter �0¼ (�� 1)e0/gd, which is the pressure scale height at
the top of the domain normalized by the depth of the unstable layer. We use �0¼ 0.3 in
all cases, which results in a density contrast of about 23. We define the fluid and
magnetic Reynolds numbers via

Re ¼
urms

�kf
, Rm ¼

urms

�kf
, ð11Þ

where kf¼ 2�/d is assumed as a reasonable estimate for the wavenumber of the energy-
carrying eddies. Note that, according to this definition, Rm is smaller than the usually
adopted one by a factor 2� based on d instead of kf. The amounts of shear and rotation
are quantified by

Sh ¼
S

urmskf
, Co ¼

2O0

urmskf
: ð12Þ

The denominators in equation (12) give an estimate of the inverse convective turnover
time. We also use the value of the relative shear rate

q ¼ �S=O0 ¼ �2
Sh

Co
, ð13Þ

which is often used in the context of disk systems, for which the local angular velocity
varies like O(r)/ r�q with q¼ 1.5. For q� 2 the flow is Rayleigh unstable. Note that for
q¼ 2, we have 2O0þS¼ 0, so the effect of rotation and shear, SUxŷþ 2X�U¼
(�2O0Uy, (2O0þS)Ux, 0), reduces to ð ~SUy, 0, 0Þ. Here we have introduced the quantity
~S ¼ �2O0 to highlight the similarity to plane shear flow (O0¼ 0), in which the effect of
shear is given by (0,SUx, 0). This analogy between plane shear flow and marginally
Rayleigh-stable flows was noted by Balbus et al. (1996) and will also play a role in our
considerations below.

2.2. Boundary conditions

Stress-free boundary conditions are used for the velocity,

Ux,z ¼ Uy,z ¼ Uz ¼ 0, ð14Þ

4 P.J. Käpylä et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

, [
Pe

tr
i K

äp
yl

ä]
 a

t 0
3:

11
 3

0 
A

ug
us

t 2
01

2 



and either vertical field or perfect conductor conditions for the magnetic field, i.e.

Bx ¼ By ¼ 0 ðvertical field Þ, ð15Þ

Bx,z ¼ By,z ¼ Bz ¼ 0 ð perfect conductorÞ, ð16Þ

respectively. We may think of them as open and closed boundaries, respectively,
because they either do or do not permit a magnetic helicity flux. In the y and x

directions we use periodic and shearing-periodic boundary conditions, respectively. In

the runs with shear and rotation we use vertical field conditions at the top and perfect

conductor conditions at the bottom, unless stated otherwise. The simulations have been

made with the PENCIL CODE (http://pencil-code.googlecode.com/) using sixth-order

explicit finite differences in space and a third-order accurate time stepping method.

3. Results

We perform three sets of simulations with our standard setup with shear and rotation

(Sets A, B, and C) and a few exploratory runs with only rotation (Set D) (table 1). In the

less extensive Sets E and F (table 2) we explore the parameter regime in the vicinity of

one of the oscillatory models Run A2 (Set E), and the effect of changing boundary

conditions on the solution (Set F). In Sets A and B we keep the shear rate S constant

and vary the rotation rate O0. In Set A we use S ¼ �0:05
ffiffiffiffiffiffiffiffi
g=d

p
and in Set B we have

S ¼ �0:1
ffiffiffiffiffiffiffiffi
g=d

p
. In Set C the rotation rate O0 ¼ 0:1

ffiffiffiffiffiffiffiffi
g=d

p
is fixed and the shear rate S is

varied. Our hydrodynamical progenitors of the runs in Set A were taken from Käpylä

et al. (2010b) and those of the runs in Set B were obtained by doubling both S and O0.

In terms of q, we explore the range �10. . .1.99. We take Runs A9 and A1 from Käpylä

et al. (2011) as the hydrodynamical progenitors for our runs in Set D with only rotation.
The case S 6¼ 0 and O0¼ 0 corresponds to q!�1 and is a special case in which a

‘‘vorticity dynamo’’ (e.g. Elperin et al. 2003, Käpylä et al. 2009a) is excited for the

values of shear chosen here. In this part of the parameter range we use data from

Käpylä et al. (2008) with O0¼ 0 and S 6¼ 0. Values of q near zero refer to runs with rapid

and nearly rigid rotation, whereas large values of jqj are associated with strong shear

and slow rotation. For q� 2 the flow is Rayleigh unstable, and thus we limit our study

to values q� 1.99. However, in Set C we find large-scale vorticity generation for

q¼ 1.99, leading eventually to supersonic velocities and numerical instability. In view

of the analogy between plane shear flow and marginally Rayleigh-stable flows

(section 2.1), this large-scale vorticity generation might be related to the aforementioned

vorticity dynamo. Therefore we reduce the highest value of q to 1.95 in Set C. In many

runs with q> 0 the rms-velocity increases in the saturated regime, which is likely due to

the magnetorotational instability. This is particularly relevant in cases where the shear

is strong, i.e. runs in Sets B and C.
In the following, we discuss first the case with shear and study the behavior of

solutions for a range of values of q. We refer to these solutions as aO (or a-shear)
dynamos. We study separately the case without shear and refer to such solutions as a2

dynamos, which are generally also known as a2O dynamos. We focus here specifically

on the case of oscillatory solutions.

Oscillatory large-scale dynamos from convection simulations 5
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Table 1. Summary of the runs.

Run Makin Ma Rm q Co Sh ~Brms
~Bx

~By Mode Comment

A1 0.036 0.031 25 1.99 0.26 �0.25 1.50 0.07 1.38 osc/osc?
A2 0.034 0.029 23 1.75 0.31 �0.27 1.50 0.08 1.27 osc/osc
A3 0.032 0.028 22 1.50 0.38 �0.28 1.58 0.10 1.29 osc/osc
A4 0.030 0.027 22 1.25 0.46 �0.29 1.41 0.10 1.12 sta/osc?
A5 0.032 0.028 22 1.00 0.57 �0.28 2.65 0.22 2.46 sta/sta
A6 0.029 0.029 23 0.75 0.73 �0.27 3.34 0.29 3.16 sta/sta
A7 0.031 0.030 24 0.50 1.07 �0.27 3.92 0.37 3.73 sta/sta
A8 0.028 0.029 23 0.25 2.17 �0.27 4.34 0.47 4.08 sta/sta
A9 0.017 0.026 20 0.10 6.19 �0.31 5.70 0.61 5.33 osc/sta
A10 0.010 0.023 18 0.05 13.7 �0.34 7.07 0.75 6.53 osc/sta
A11 0.011 0.011 8 �0.05 �30.2 �0.75 � � � osc/� Not run to saturation
A12 0.017 0.016 13 �0.10 �9.87 �0.49 � � � osc/� Not run to saturation
A13 0.023 0.056 45 �0.25 �1.13 �0.14 2.21 0.36 1.81 osc?/sta
A14 0.026 0.062 49 �0.50 �0.52 �0.13 2.10 0.22 1.85 sta/sta
A15 0.028 0.027 21 �1.0 �0.59 �0.30 � � � sta/� No dynamo
A16 0.030 0.028 23 �2.5 �0.22 �0.28 � � � osc/� No dynamo
A17 0.032 0.030 24 �5.0 �0.11 �0.26 � � � osc/� No dynamo
A18 0.037 0.036 28 �10.0 �0.04 �0.22 � � � osc/� No dynamo

B1 0.044 0.090 72 1.99 0.18 �0.18 1.15 0.09 1.00 osc/sta
B2 0.036 0.040 32 1.75 0.46 �0.40 2.70 0.13 2.54 osc/osc?
B3 0.031 0.039 31 1.50 0.54 �0.40 3.18 0.18 2.99 sta/sta
B4 0.030 0.040 31 1.25 0.64 �0.40 3.22 0.20 3.03 sta/sta
B5 0.032 0.042 33 1.00 0.77 �0.38 2.94 0.20 2.74 sta/sta
B6 0.027 0.034 27 0.75 1.25 �0.47 3.79 0.34 3.57 sta/sta
B7 0.025 0.038 31 0.50 1.66 �0.42 3.63 0.29 3.38 sta/sta
B8 0.019 0.036 29 0.25 3.50 �0.44 4.00 0.33 3.68 osc/sta
B9 0.011 0.029 23 0.10 11.0 �0.55 4.51 0.41 4.00 sta/sta
B10 � � � 0.05 � � � � � � No convection
B11 � � � �0.05 � � � � � � No convection
B12 0.011 0.011 8 �0.10 �30.2 �1.51 � � � osc/� Marginal dynamo
B13 0.020 0.018 15 �0.25 �6.91 �0.86 � � � osc?/� Not run to saturation
B14 0.024 0.086 69 �0.50 �0.74 �0.18 1.35 0.19 1.01 osc?/sta
B15 0.027 0.094 75 �1.0 �0.34 �0.17 1.16 0.10 0.95 osc?/sta
B16 0.032 0.030 24 �2.5 �0.43 �0.54 � � � osc/� Marginal dynamo
B17 0.037 0.032 26 �5.0 �0.20 �0.50 1.44 0.06 1.20 osc/sta
B18 0.042 0.035 28 �10.0 �0.09 �0.46 1.61 0.08 1.35 osc/sta

C1 0.055 0.165 131 1.95 0.19 �0.19 1.06 0.10 0.70 sta/osc
C2 0.034 0.060 58 1.75 0.53 �0.46 2.32 0.15 1.99 sta/sta
C3 0.031 0.050 50 1.50 0.64 �0.48 2.63 0.17 2.36 sta/sta
C4 0.029 0.042 33 1.25 0.76 �0.47 3.22 0.20 3.00 sta/sta
C5 0.029 0.039 31 1.00 0.83 �0.41 3.48 0.23 3.28 sta/sta
C6 0.029 0.034 27 0.75 0.94 �0.35 3.91 0.27 3.73 sta/sta
C7 0.029 0.030 24 0.50 1.06 �0.27 4.14 0.36 3.97 sta/sta
C8 0.028 0.024 19 0.25 1.34 �0.17 3.35 0.54 3.11 sta/sta
C9 0.027 0.020 16 0.10 1.58 �0.08 2.18 0.61 1.85 sta/sta
C10 0.026 � 21 0.05 1.20 �0.03 � � � sta/� Not run to saturation
C11 0.026 � 21 �0.05 1.21 0.03 � � � sta/� No dynamo
C12 0.027 � 21 �0.10 1.18 0.06 � � � sta/� No dynamo
C13 0.027 � 21 �0.25 1.18 0.15 � � � sta/� Not run to saturation
C14 0.027 � 22 �0.50 1.16 0.29 � � � sta/� Not run to saturation
C15 0.028 � 23 �1.0 1.12 0.56 � � � sta/� Not run to saturation
C16 0.033 � 27 �2.0 0.95 0.95 � � � sta/� Not run to saturation
C17 0.061 � 48 �5.0 0.52 1.31 � � � osc/� Marginal dynamo

(Continued )

6 P.J. Käpylä et al.
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3.1. a2X dynamos

In our previous studies of convection-driven large-scale dynamos with shear (Käpylä
et al. 2008, 2009b, 2010a), only non-oscillatory solutions were obtained. The large-scale
field often had opposite signs in the convectively unstable and stable layers, although
solutions with a single sign were obtained at low-magnetic Reynolds numbers (see
figure 5 of Käpylä et al. 2010a) and in cases where O0¼ 0 (see figure 7 of Käpylä et al.
2008). Runs with sinusoidal shear and rotation have also been reported to show non-
oscillatory large-scale fields (Hughes and Proctor 2009, Käpylä et al. 2010c). In this
paper, we extend the parameter ranges of our previous studies in search of oscillatory
solutions. In this section we describe the results from different sets of runs individually,
and summarize the results for the different dynamo modes in section 3.1.5.

3.1.1. S^ const, X0 varies (Sets A and B). As is evident from table 1, many of the runs
in Sets A and B are non-oscillatory (see figure 1(a) for a representative result from
Run A6). For Set A the mean magnetic field shows reversals in the range 1.5. q< 2,
while the increased O0 in Set B pushes the oscillatory regime somewhat toward
higher qs. The oscillations are particularly clear in the kinematic regime in Runs A1–A3.
Cycles in the non-linear regime are more irregular and in one case the dynamo mode

Table 1. Continued.

Run Makin Ma Rm q Co Sh ~Brms
~Bx

~By Mode Comment

D1 0.081 0.021 66 0 4.60 0 1.18 0.30 0.31 osc/osc Pm¼ 2, pc/vf
D1b � 0.025 39 0 3.85 0 0.36 0.09 0.09 osc/osc Pm¼ 1, pc/vf
D1c � 0.032 26 0 2.96 0 0 0 0 osc/�
D1d 0.083 0.021 66 0 4.60 0 1.18 0.32 0.29 osc/osc Pm¼ 2, vf/vf
D1e 0.083 0.023 72 0 4.22 0 0.54 0.10 0.09 osc/osc Pm¼ 2, pc/pc
D2 0.057 0.018 58 0 17.5 0 0.64 0.10 0.10 osc/osc Pm¼ 2, pc/vf

Note: Makin and Ma are the volume-averaged rms-velocities from the kinematic and saturated states, respectively. In Sets A
and B we use Pr¼ 1, Ra¼ 106, Pm¼ 1, and grid resolution 1283. Perfect conductor (vertical field) conditions for the magnetic
field at the lower (upper) boundary are used. In Set D, Pm varies, while Pr¼ 0.24, Ra¼ 2� 106, Sh¼ 0, and grid resolution
256� 1282. The boundary conditions in Set D are listed in the rightmost column of the table. Oscillatory (osc) and stationary
(sta) modes of the dynamo are denoted in the second column from right. Oscillatory decay is marked by ‘‘osc/�’’ with the
comment ‘‘no dynamo’’. For both types of oscillatory solutions, the q values are indicated in italics. Question marks indicate
that only very few sign changes are covered by the time series or irregular reversals are seen. Here, ~Brms ¼ Brms=Beq, where
Brms is the total rms magnetic field, and ~Bi ¼ hB

2

i i
1=2=Beq.

Table 2. Summary of the additional runs.

Run Makin Ma Rm q Co Sh ~Brms
~Bx

~By Mode Comment

E1 0.031 0.022 18 1.75 0.14 �0.12 1.18 0.11 0.90 sta/sta
E2 0.033 0.027 21 1.75 0.24 �0.21 1.30 0.08 1.06 osc/osc
E3 0.034 0.029 23 1.75 0.31 �0.27 1.50 0.08 1.27 osc/osc Same as Run A2
E4 0.037 0.031 25 1.75 0.41 �0.36 2.09 0.10 1.87 osc/osc
E5 0.037 0.053 42 1.75 0.51 �0.45 2.72 0.15 2.47 sta/sta

F1 0.034 0.029 23 1.75 0.31 �0.27 1.50 0.08 1.27 osc/osc pc/vf, same as Run A2
F2 0.034 0.029 23 1.75 0.31 �0.27 0.82 0.06 1.33 osc/osc vf/vf
F3 0.034 0.029 23 1.75 0.31 �0.27 1.51 0.10 1.33 sta/sta pc/pc
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changes to a non-oscillatory mode (Run B1). We find that in the parameter regime
explored here, non-oscillatory solutions are excited in the range 0.2. q< 1.5. For
�10� q. 0.25, however, another oscillatory regime is found. These runs tend to show
oscillations in the kinematic stage, but often switch to a stationary mode in the non-linear
regime (see the time evolution of the horizontally averaged magnetic field components of
Run B8 in figure 1(b)). This might just be a manifestation of the fact that the excitation
conditions for different dynamomodes do not necessarily reflect the stable dynamomode
in the nonlinear regime (Brandenburg et al. 1989). This behavior also explains the lack of
oscillatory dynamos in our previous works, where we always used q¼ 1. This further
illustrates the importance of comprehensive parameter studies instead of individual
numerical experiments (Käpylä et al. 2010b).

Convection is suppressed especially near q¼ 0 due to the rapid rotation, decreasing
the Reynolds number and thus also leading to the absence of dynamo action in this
regime. Many runs in the q< 0 regime, especially in Set A, are either subcritical or show
very slow growth of the magnetic field and were not run to saturation. This lack of
dynamo action may seem surprising because in the q< 0, regime the contributions to
the a effect due to shear and rotation have the same sign (Käpylä et al. 2009b). On the

Figure 2. Mean velocities (upper row) and magnetic fields (lower row) averaged over the y-direction and
time from Run B14. The velocities are shown in units of

ffiffiffi
d
p

g and the magnetic fields in units of volume-
averaged equipartition field Beq.

(a) (b)

Figure 1. Horizontally averaged horizontal components of the magnetic field from non-oscillatory Run A6
(a) and initially oscillatory but ultimately stationary Run B8 (b) a-shear dynamos.
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other hand, the magnetorotational instability can be excited for q> 0, which may
explain the more favourable dynamo excitation in that regime. However, we find that if
a saturated dynamo is present in this regime, also the turbulence is enhanced (see Runs
A13, A14, B14, and B15). This is associated with the generation of additional large-
scale flows that depend on x (figure 2). The large-scale magnetic fields are generally also
x-dependent. Such modes are not visible in the kinematic stages of the runs.

3.1.2. S varies, X0^ const (Set C). In Set C, only Run C17 with the strongest shear
shows oscillations in the kinematic regime. The large-scale field in Run C1 shows
oscillations in the nonlinear stage. We note that this is the only stable-to-oscillatory
transition in the whole series of models explored. In the kinematic stage of this run,
we observe an rms-velocity enhanced by almost a factor of two in comparison to
Run C2. The only difference between these runs is a 10% smaller value of S for Run C2.
The enhancement is likely to be due to the large-scale flows generated by the vorticity
dynamo. Furthermore, as the magnetic field grows, the rms-velocity increases by
another factor of three, which may be attributed to the magnetorotational instability.
Similarly as in Sets A and B, the dynamo is harder to excite for q< 0 and in many cases
the growth rate of the magnetic field is low, which is the reason why some of the runs
were not continued up to saturation.

3.1.3. Sets E and F. It appears that small changes of Co and Sh are enough to change
the dynamo mode, e.g. compare Runs B2 and C2 with q¼ 1.75. In Set E we vary Co and
Sh, taking an oscillatory Run A2 as our basis (table 2). We find that oscillatory
solutions are found in the intermediate range 0.24<Co< 0.41, corresponding to
0.21<�Sh< 0.36, whereas for lower and higher values of Co and Sh quasi-steady
solutions appear.

In Set F we vary the magnetic boundary conditions of Run A2 and find that for
perfect conductor boundaries at the top and bottom of the domain, the solution is non-
oscillatory. For a vertical field condition on both boundaries, an oscillatory solution is
found.

3.1.4. Cycle frequency and phase diagrams. Even in the cases with the clearest
oscillatory solutions, e.g. Run A2 in figure 3(a), the period of the oscillation varies from
cycle to cycle. Furthermore, the cycle period is of the order of 103 convective turnover
times in this run. Such a long-cycle period limits the duration of the simulation to only a
few cycles.

The cycle frequency of a saturated a-shear dynamo under the assumption of
homogeneity is given by

!cyc ¼ �Tk
2
m, ð17Þ

where �T¼ �tþ � is the total magnetic diffusivity, �t is the turbulent diffusivity, and km
is the wavenumber of the dominant mode of the magnetic field (Blackman and
Brandenburg 2002). Empirically, a similar law (!cyc=�Tk

2
m ¼ 1:6. . .2.3) was also found

for oscillatory a2 dynamos with nonuniform helicity distribution (Brandenburg et al.
2008). Since equation (17) is also valid in the non-linear regime, the quenching of �t as a
function of Rm and B can be estimated (Käpylä and Brandenburg 2009).
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Although equation (17) is expected to be inaccurate in the present case, where the value
of km is uncertain, the cycle frequency is likely regulated by the value of �t. This suggests
that the turbulent diffusivity is quenched by a factor of roughly two to three in Run A2,
compared to the kinematic stage of the same run. This is entirely consistent with
independent measurements of �t, using the quasi-kinematic test-field method for
quenched a2 dynamos (Brandenburg et al. 2008).

The phase diagram of the horizontal components of the large-scale field averaged
over 0.2d< z< 0.8d in Run A2 are shown in figure 4(a). The streamwise and cross-
stream field components are in antiphase in this case. This is expected because S is
negative (Stix 1976), so a positive Bx produces a negative By when S< 0.

3.1.5. Summary. The occurrence of oscillatory and quasi-steady solutions is
conveniently discussed in parameter space where these types of solutions are marked
in a Sh–Co diagram (see figure 5(a) and (b) for the kinematic and saturated regimes,
respectively). Both coordinate axes are stretched by taking the square root, i.e. we use
�

ffiffiffiffiffiffiffiffiffi
jShj
p

, where upper and lower signs refer to the sign of Sh (and likewise for Co).
Oscillatory solutions mainly occur in two branches near q¼ 2 for �Sh> 0.2 and near
Sh¼ 0 for high enough Co (section 3.2). This is also true of the kinematic regime, but in

(a) (b)

Figure 4. Phase diagrams for the same runs as in figure 3.

(a) (b)

Figure 3. Same as figure 1 but for oscillatory a-shear dynamo Run A2 (a) and a2 dynamo Run D1 (b).

10 P.J. Käpylä et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

, [
Pe

tr
i K

äp
yl

ä]
 a

t 0
3:

11
 3

0 
A

ug
us

t 2
01

2 



that case there are additional occurrences of oscillatory solutions for strong negative
shear and both signs of Co (figure 5(a)). Results from spherical geometry suggest that
the appearance of cyclic magnetic fields depends also on the magnetic Reynolds number
(Brown et al. 2011b).

3.2. Oscillatory a2 dynamos

In an earlier study we found the appearance of large-scale magnetic fields in rigidly
rotating convection (Käpylä et al. 2009b). However, none of the runs in that paper were
run for much more than 103 convective turnover times. Although sign changes of the
large-scale fields were seen (see figure 7 of Käpylä et al. 2009b), the time series were too
short to enable any firm conclusions regarding the possibly oscillatory nature of the
dynamo.

Furthermore, in similar rapidly rotating runs without magnetic fields, the appearance
of large-scale vortices has been discovered (Chan 2007, Käpylä et al. 2011, Mantere
et al. 2011). Here we use the hydrodynamical states of runs with large-scale cyclones as
initial conditions for our dynamo simulations. We find that a large-scale dynamo is
excited provided the magnetic Reynolds number exceeds a certain critical value.
Furthermore, as the magnetic fields become dynamically important, the cyclones decay
and are absent in the non-linear stage. The large-scale magnetic field is oscillatory in the
two cases with different values of Co that we have considered. We conjecture that the
dynamo is of a2 type in which case oscillatory solutions can be excited if the a-effect has
a suitable spatial profile (e.g. Baryshnikova and Shukurov 1987, Rüdiger et al. 2003,
Mitra et al. 2010). Figure 3(b) shows the horizontally averaged mean magnetic fields
from a rigidly rotating Run D1 where an a2 dynamo is excited. In Run D1 the large-
scale fields are only functions of z, whereas in the more rapidly rotating Run D2 the

(a) (b)

Figure 5. Dynamo mode in the kinematic regime (a) and in the saturated stage (b). Filled circles indicate
oscillatory solutions and open circles (red and blue) quasi-steady ones. Red diamonds are data from Käpylä
et al. (2008). Crosses indicate decaying solutions. Dashed and dash-dotted lines mark the positions of q¼ 1
and 2, respectively.

Oscillatory large-scale dynamos from convection simulations 11

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
H

el
si

nk
i]

, [
Pe

tr
i K

äp
yl

ä]
 a

t 0
3:

11
 3

0 
A

ug
us

t 2
01

2 



large-scale fields depend also on x and y. Furthermore, the oscillatory nature of the
solution is then not so clear. Figure 4(b) shows the phase diagram of the horizontal
components of the large-scale field in Run D1. There is a phase shift of �/2.

The saturation level of the dynamo is sensitive to the magnetic Reynolds number.
Decreasing Rm from 66 to 39 by doubling the value of � decreases the saturation field
strength by a factor of three (Run D1b). Another doubling of � shuts the dynamo off
(Run D1c).

Our standard setup in the present paper is to use perfect conductor boundaries at the
bottom and vertical field conditions at the top. Changing the lower boundary also to
vertical field conditions produces no discernible difference in the solution (Run D1d).
However, imposing perfect conductor conditions on both boundaries decreases the
saturation strength to less than a half of that in the standard setup and decreases the
fraction of the large-scale field (Run D1e), but the solutions remain oscillatory. We
have not, however, studied the Rm-dependence of the saturation field strength in this
case, as was done in Käpylä et al. (2010a).

4. Conclusions

We have presented results from simulations of turbulent magnetized convection, both
with an imposed shear flow using the shearing box approximation (Sets A, B, E, and F)
and in rigidly rotating cases (Set D). In accordance with previous results, we find the
generation of dynamically important large-scale magnetic fields. In distinction to our
earlier studies, we vary here the relative importance of rotation and shear by covering
the range q¼�10. . .1.99 of the relative shear rate q. We find that for q¼ 1 the solutions
are always stationary, which is in accordance with earlier results. In Sets A and B, where
the shear is kept constant and the rotational influence is varied, oscillatory solutions are
found for large q, i.e. slower rotation, and for q	 1. These trends are particularly clear
in the kinematic regime. In the saturated state, however, we often find that the dynamo
switches from oscillatory to stationary. In Set C, where O0¼ const, only a single run
shows oscillatory magnetic field in the saturated regime. Keeping q fixed and varying
Co and Sh shows that oscillatory solutions appear only in the rather narrow range
0.24<Co< 0.41. Furthermore, when a perfect conductor boundary condition is
adopted also at the top, the dynamo changes to a quasi-steady mode. Similar
dependencies on boundary conditions can also be found in mean-field dynamos and are
usually in agreement with corresponding DNS. These results suggest that a more
thorough parameter study is needed and that the direct simulations need to be
compared with mean-field models with the same parameters and turbulent transport
coefficients from the test-field method. However, such a study is out of scope of the
present paper.

It might not be easy to find general rules governing the transitions from oscillatory to
non-oscillatory behavior in the parameter space defined by shear and rotation rates in
the kinematic and nonlinear regimes. The simple rule that dynamos with shear oscillate
while those without shear do not, is only safe in homogeneous systems without
boundaries. For example, in the rigidly rotating cases of Set D, all the dynamo solutions
are found to be oscillatory. In some cases, suitable spatial profiles of the resulting a
effect have been found to be responsible for oscillatory behavior (e.g. Baryshnikova and

12 P.J. Käpylä et al.
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Shukurov 1987, Rüdiger et al. 2003, Mitra et al. 2010). Large-scale vortices, present in
the hydrodynamic state, are no longer found in the saturated state of the dynamo.
Usage of a perfect conductor boundary condition instead of a vertical field condition,
allowing for magnetic helicity fluxes, is found to decrease both the total saturation field
strength and the strength of the large-scale field with respect to the total magnetic field.
This might be a consequence of what is known as catastrophic (or Rm-dependent)
quenching, which cannot easily be alleviated in a closed domain, but it might also be a
consequence of a delayed onset of dynamo action, which is explained by linear theory.
In fact, recent work on catastrophic quenching has shown that resistive effects tend to
dominate over effects resulting from magnetic helicity fluxes for magnetic Reynolds
numbers below a value of around 103 or even 104 (Candelaresi et al. 2011). This makes
an explicit demonstration of alleviated catastrophic quenching hard at the Rm values
available to date.
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Mantere, M.J., Käpylä, P.J. and Hackman, T., Dependence of the large-scale vortex instability on latitude,

stratification and domain size. Astron. Nachr. 2011, 332, 876–882.
Miesch, M.S. and Toomre, J., Turbulence, magnetism, and shear in stellar interiors. Ann. Rev. Fluid Mech.

2009, 41, 317–345.
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