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ABSTRACT

We report on simulations of turbulent, rotating, stratified, magnetohydrodynamic convection in spherical wedge
geometry. An initially small-scale, random, weak-amplitude magnetic field is amplified by several orders of
magnitude in the course of the simulation to form oscillatory large-scale fields in the saturated state of the dynamo.
The differential rotation is solar-like (fast equator), but neither coherent meridional poleward circulation nor
near-surface shear layer develop in these runs. In addition to a poleward branch of magnetic activity beyond 50◦
latitude, we find for the first time a pronounced equatorward branch at around 20◦ latitude, reminiscent of the solar
cycle.
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1. INTRODUCTION

The solar magnetic field exhibits a quasi-periodic cycle with
a period of approximately 22 years. This cycle is manifested
by the appearance of sunspots in low-latitude activity belts that
migrate toward the equator as the sunspot cycle progresses.
Reproducing this behavior remains a major challenge to the-
oreticians. Mean-field models, where small-scale turbulent
effects are parameterized (e.g., Krause & Rädler 1980), have
reproduced many aspects of the solar cycle, but with broadly
varying assumptions for the various parameterizations (see, e.g.,
Dikpati & Charbonneau 1999; Ossendrijver 2003; Käpylä et al.
2006; Kitchatinov & Olemskoy 2012).

Another, computationally much more demanding, but
physically more consistent route is to solve the equations of
magnetohydrodynamics directly without resorting to ill-defined
parameterizations for the small scales. In practice, however,
realistic Reynolds and Rayleigh numbers, describing the effects
of molecular diffusion with respect to advection, are not acces-
sible to simulations (e.g., Chan & Sofia 1986; Miesch & Toomre
2009; Käpylä 2011). The usual approach is to enhance the dif-
fusion coefficients to levels that are computationally feasible
while striving to maximize the resolution.

Early spherical shell simulations were able to produce a solar-
like rotation profile, i.e., one with “equatorward acceleration,”
and oscillatory large-scale dynamos (Gilman 1983; Glatzmaier
1985). However, the direction of propagation of the dynamo
wave was toward the poles, in contradiction to the Sun. This
can be qualitatively explained by a Parker dynamo wave with
positive radial shear near the equator in conjunction with
negative kinetic helicity density, or a positive α-effect, in
the northern hemisphere (Parker 1955). More sophisticated
simulations with solar rotation rate and luminosity have failed to
produce strong large-scale magnetic fields (Brun et al. 2004) or
clear cyclic behavior (Miesch et al. 2011). These runs omitted
a stable layer below the convection zone. When such a layer
is added, non-oscillatory large-scale fields are also found for
solar parameters (Browning et al. 2006). Later, oscillatory
solutions were obtained from similar simulations with subgrid-
scale modeling (Ghizaru et al. 2010; Racine et al. 2011). These
are the most solar-like solutions so far, but also in them the

activity is at too high latitudes and the activity belts do not
propagate toward the equator. When the rotation rate is increased
from the solar value in runs without an overshoot layer, first
stable wreaths of strong large-scale fields appear (Brown et al.
2010), and at even more rapid rotation, poleward migrating
activity is found (Käpylä et al. 2010; Brown et al. 2011).

We report here results from simulations of turbulent convec-
tion in spherical wedge geometry with solar-like equatorward
acceleration that exhibit, for the first time, equatorward migrat-
ing magnetic activity near the equator and a polar branch at high
latitudes. The numerical model is the same as that in Käpylä et al.
(2011a) but here we add magnetic fields.

2. THE MODEL

We model a segment of a star, i.e., a “wedge,” in spherical
polar coordinates, where (r, θ, φ) denote radius, colatitude, and
longitude. The radial, latitudinal, and longitudinal extents of the
wedge are 0.7 R � r � R, θ0 � θ � π − θ0, and 0 � φ � φ0,
respectively, where R is the radius of the star. Here we take
θ0 = π/8 and φ0 = π/2.

We solve the compressible hydromagnetics equations,

∂ A
∂t

= u × B − ημ0 J, (1)

D ln ρ

Dt
= −∇ · u, (2)

Du
Dt

= g − 2� × u +
1

ρ
( J × B − ∇p + ∇ · 2νρS) , (3)

T
Ds

Dt
= 1

ρ

[
∇ · (K∇T + χtρT ∇s) + 2νS2

]
, (4)

where A is the magnetic vector potential, u is the velocity,
B = ∇ × A is the magnetic field, J = μ−1

0 ∇ × B is the
current density, η is the magnetic diffusivity, μ0 is the vacuum
permeability, D/Dt = ∂/∂t + u · ∇ is the advective time
derivative, ν is the kinematic viscosity, K is the radiative heat
conductivity, χt is the unresolved turbulent heat conductivity,
ρ is the density, s is the specific entropy, T is the temperature,
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Figure 1. (a) Normalized time-averaged mean rotation profile Ω/Ω0 =
Uφ/(Ω0r sin θ ) + 1. (b) Relative kinetic helicity density hrel. (c) Rotation profile
(color contours) and meridional circulation Um = (Ur, Uθ , 0) (arrows) near
the equator. From Run B4m.

(A color version of this figure is available in the online journal.)

and p is the pressure. The fluid obeys the ideal gas law with
p = (γ − 1)ρe, where γ = cP/cV = 5/3 is the ratio of
specific heats at constant pressure and volume, respectively, and
e = cVT is the internal energy. The gravitational acceleration
is g = −GM r̂/r2, where G is the gravitational constant,
M is the mass of the star, and r̂ is the unit vector in the
radial direction. We omit the centrifugal force (cf. Käpylä
et al. 2011b). The rate of the strain tensor S is given by
Sij = (1/2)(ui;j + uj ;i) − (1/3)δij∇ · u, where the semicolons
denote covariant differentiation (Mitra et al. 2009).

2.1. Initial and Boundary Conditions

The initial state is isentropic and the hydrostatic temperature
gradient is ∂T /∂r = −g/[cV(γ − 1)(m + 1)], where m = 1.5

Figure 2. Bφ near the surface of the star at r = 0.98 R as a function of latitude
90◦ − θ for Co = 4.7 ((a), Run B3m), 7.6 ((b), B4m), and 14.8 ((c), B5m). The
white dotted line denotes the equator 90◦ − θ = 0.

(A color version of this figure is available in the online journal.)

is the polytropic index. We fix the value of ∂T /∂r on the
lower boundary. The density profile follows from hydrostatic
equilibrium. The heat conduction profile is chosen so that
radiative diffusion is responsible for supplying the energy
flux in the system, with K decreasing more than two orders
of magnitude from bottom to top (Käpylä et al. 2011a). A
weak random small-scale seed magnetic field is taken as initial
condition (see below).

The radial and latitudinal boundaries are taken to be impen-
etrable and stress free; see Equations (14) and (15) of Käpylä
et al. (2011b). For the magnetic field we assume perfect con-
ductors at the lower radial and latitudinal boundaries, and radial
field at the outer radial boundary; see Equations (15)–(17) of
Käpylä et al. (2010). On the latitudinal boundaries we assume
that the thermodynamic quantities have zero first derivatives,
thus suppressing heat fluxes through the boundaries.

On the upper boundary we apply a blackbody condition

σT 4 = −K
∂T

∂r
− χtρT

∂s

∂r
, (5)
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Figure 3. (a) Bφ (r, t) in units of the local equipartition field strength at 25◦
latitude for Run B4m shown in Figure 2(b). (b) Blow-up of Figure 2(b) showing
the region −60◦ < 90◦ − θ < 60◦ and 2200 < turmskf < 3200 at r = 0.98 R.
(c) Like Figure 2(b), but at r = 0.85 R and Bφ is normalized by its volume-
averaged rms value at each time to make the early time evolution visible.

(A color version of this figure is available in the online journal.)

where σ is the Stefan–Boltzmann constant. We use a modified
value for σ that takes into account that our Reynolds and
Rayleigh numbers are much smaller than in reality, so K and
therefore the flux are much larger than in the Sun.

2.2. Dimensionless Parameters

We obtain non-dimensional quantities by choosing R =
GM = ρ0 = cP = μ0 = 1, where ρ0 is the initial density at
0.7 R. Our simulations are defined by the energy flux imposed at
the bottom boundary, Fb = −(K∂T/∂r)|r=0.7R , the temperature
at the top boundary, T1 = T (r = R), as well as the values
of Ω0, ν, η, and χtm = χt(rm = 0.85 R). The corresponding
non-dimensional input parameters are the luminosity parameter
L = L0/[ρ0(GM)3/2R1/2], the normalized pressure scale height
at the surface, ξ = [(γ − 1)cVT1]GM/R, the Taylor number
Ta = (2ΩR2/ν)2, the Prandtl number Pr = ν/χtm, the magnetic
Prandtl number Pm = ν/η, and the non-dimensional viscosity
ν̃ = ν/

√
GMR. Other useful diagnostic parameters are the

Reynolds number Re = urms/νkf and the Coriolis number

Figure 4. Top panel: Bφ (black line) and Br (red) at 90◦−θN = 25◦ latitude. The
blue line shows 0.5Br at θ0. Bottom panel: Bφ from θN and θS corresponding
to latitudes ±25◦, respectively.

(A color version of this figure is available in the online journal.)

Co = 2Ω0/urmskf , where urms = ((3/2)〈u2
r + u2

θ 〉)1/2 is the
rms velocity. Note that for urms we omit the contribution
from the azimuthal velocity, because its value is dominated
by effects from the differential rotation (Käpylä et al. 2011b).
The Taylor number can also be written as Ta = Co2Re2(kfR)4,
with kfR ≈ 21. Due to the fact that the initial stratification is
isentropic, we quote the (semi-) turbulent Rayleigh number Rat
from the thermally relaxed state of the run,

Rat = GM(Δr)4

νχtmR2

(
− 1

cP

ds

dr

)
rm

, (6)

where kf = 2π/Δr is an estimate of the wavenumber of the
largest eddies and Δr = 0.3 R is the thickness of the layer.
The magnetic field is expressed in equipartition field strengths,
Beq(r) = 〈μ0ρu2〉1/2

θφ , where the subscripts indicate averaging
over θ and φ with azimuthally averaged mean flows subtracted.

The simulations were performed with the Pencil Code,4

which is a high-order finite difference method for solving the
compressible equations of magnetohydrodynamics.

3. RESULTS

Our primary simulation (Run B4m) is continued from a
thermally relaxed snapshot of a hydrodynamic Run B4 of
Käpylä et al. (2011a) with L = 3.8 × 10−5, ξ = 0.02,
Ta ≈ 1.4 × 1010, ν̃ = 2.9 × 10−5, and Pr = 2.5, resulting
in Re = 36, Co = 7.6, and Rat ≈ 3 × 106. The discussion
of the results refers to this run unless stated otherwise. We also
consider two other runs with Co = 4.7 and Re = 39 (Run B3m),
as well as Co = 14.8 and Re = 31 (Run B5m). The former is
continued from Run B3 of Käpylä et al. (2011a) whereas the
latter is run from the initial conditions stated above. Our seed
magnetic field has an amplitude of ≈10−4 Beq. As a starting
point, we use Pm = 1 and a resolution of 128×256×128 mesh

4 http://code.google.com/p/pencil-code/
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Figure 5. Snapshots of the toroidal magnetic field Bφ at r = 0.98 R from Run B4m at six different times separated by Δturmskf ≈ 105.

(A color version of this figure is available in the online journal.)

points, but also study the magnetic Prandtl number dependence
by continuing Run B4m with values Pm = (0.25, 0.5). In Run
B4m the magnetic field grows exponentially over roughly 1500
convective turnover times before reaching the saturated stage in
which the total rms magnetic field is Brms = 0.72 Beq.

The convection pattern near the surface shows smaller scales
at high latitudes and larger elongated structures or “banana cells”
near the equator. Figure 1 shows the rotation profile in the
saturated regime of the dynamo from Run B4m. The equator
rotates faster than the high latitudes and significant radial
differential rotation is present only near the equator. In the lower
part of the convection zone, ∂Ω/∂r is negative at low latitudes
(just outside the inner tangent cylinder) and positive at high
latitudes. The meridional circulation shows several small cells
outside the tangent cylinder on both hemispheres. The latitudinal
differential rotation, measured by ΔΩ ≡ (Ωθ=θ0 − Ωeq)/Ωeq,
where Ωeq = Ω(θ = π/2), decreases from 0.08 in the kinematic
regime to 0.07 in the saturated state. The rotation profiles in Runs
B3m and B5m are qualitatively similar.

We define mean quantities as averages over longitude and
denote them by an overbar. In Run B4m the relative kinetic
helicity density hrel = u · ω/urmsωrms, with ω = ∇ × u, is
negative (positive) in the northern (southern) hemisphere; see
Figure 1. No pronounced sign reversal with depth is seen.
The maximum value of hrel is around 0.3, which allows us
to determine the dynamo number describing the strength of
the α-effect as Cα = α/ηt0k1 ≈ hrelk

(ω)
f /k1 ≈ 2.7, where

k
(ω)
f = ωrms/urms is the approximate wavenumber of the energy-

carrying eddies, k1 = π/Δr is the lowest radial wavenumber
in the domain, while α ≈ hrelurms/3 and ηt0 = urms/3k

(ω)
f

are estimates for α-effect and turbulent magnetic diffusivity.

(We note that χt/ηt0 varies between 1.9 near the surface
and 0.15 within the convection zone.) The relevant dynamo
number characterizing the radial differential rotation is CΩ =
ΔΩ/ηt0k

2
1 ≈ 55, where we have used ΔΩ/Ω0 = 0.06 for the

normalized radial shear (not to be confused with ΔΩ defined
above). The ratio CΩ/Cα is well over 10. Following Roberts &
Stix (1972), this suggests that we are in what is known as the αΩ
regime where shear is strong enough to favor cyclic behavior.

Time series of the averaged longitudinal component of the
magnetic field are shown in Figure 2 for different values of
Co = (4.7, 7.6, and 14.8). For Co = 7.6, two activity belts
are visible; one propagating poleward at high latitudes and
another propagating equatorward between 10◦ and 30◦ latitude.
The equatorward branch at mid-latitudes is also visible for
Co = 4.7, but there the cycle is irregular and the magnetic
field at low latitudes is weaker. The dynamo mode appears to
change to a non-oscillatory one after around 3800 turmskf . In
the most rapidly rotating case with Co = 14.8 the cyclicity
and equatorward migration of the field are clearly present
but fluctuations from one cycle to the next are again larger
than in Run B4m. In all of the runs a poleward branch with
a shorter period is visible near the surface at low latitudes
which looks similar to the solution obtained in the nonlinear
stage in Käpylä et al. (2010). This mode can be occasionally
distinguished in the saturated stage, in particular in Run B5m,
but it remains subdominant to the mode with longer period
exhibiting equatorward migration.

The magnetic field is strongest at r/R ≈ 0.85 and seems to
propagate from there to top and bottom of the convection zone;
see Figure 3(a), which shows Bφ as a function of r and t being
regenerated in the bulk of the convection zone during each cycle.
As the field approaches the surface, it propagates equatorward at
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low latitudes; see Figure 3(b). This mode becomes apparent in
the nonlinear phase whereas in the kinematic stage the solution
in the bulk of the convection zone does not oscillate; see
Figure 3(c) for t urmskf < 1000. Since Bφ is here normalized
by the instantaneous average value, one sees the spatio-temporal
structure, and that no reversals occur. Opposite transitions (from
oscillatory to quasi-steady) have been observed in Cartesian
simulations (Hubbard et al. 2011; Käpylä et al. 2012).

On theoretical grounds, we would expect |Bφ/Br | to be of
the order of |CΩ/Cα|1/2 ≈ 4.5, but the actual ratio is only
around unity; see Figure 4. We cannot therefore be certain that
the dynamo is really in the αΩ regime, as discussed above.
Interestingly, Br shows a greater amplitude at high latitudes
while Bφ is stronger at lower latitudes. Furthermore, Br at
high latitudes changes sign approximately when Bφ in the low-
latitude activity belt changes sign.

Visualizations of the toroidal magnetic field from Run B4m
near the surface (Figure 5) show a persistent activity belt near
the equator which is changing polarity with a period of roughly
400τ , where τ = (urmskf)−1 is the convective turnover time. We
find that decreasing Rm to 18 (Pm = 0.5) shortens the cycle
period by roughly 20% to 330τ . At Rm = 9 (Pm = 0.25) the
magnetic field decays, but the decay mode is oscillatory with a
period of 270τ . Similar increase of the cycle period with Rm
has been observed in forced turbulence simulations (Käpylä &
Brandenburg 2009) and suggests that the current runs are not
in a regime where the molecular diffusivities are unimportant.
The same cyclic behavior is seen throughout the depth of the
convection zone above r = 0.75 R. Relating the turnover time
of our highest Rm model to that of the deep layers of the solar
convection zone, i.e., one month, leads to a magnetic cycle
period of roughly 33 years. The cycle might well be shorter if
the relevant depth is shallower. On the other hand, if we used
k

(ω)
f instead of kf , our cycle period would be 4–5 times longer. It

is also noteworthy that Bφ has mixed parity about the equator,
except around the time turmskf = 2500 when the field is of odd
parity; see Figure 4.

4. CONCLUSIONS

We have reported solar-like magnetic cycles from simulations
of turbulent convection in spherical wedge geometry. The
magnetic activity is concentrated in two belts, a high-latitude
one propagating poleward, and a low-latitude one propagating
equatorward. The strongest magnetic fields, however, occur in
the high-latitude activity branch. Simulations with moderately
slower and faster rotation show similar behavior. These results
will be discussed in more detail in forthcoming publications.
Relating the convective turnover time in the simulation to that
of the Sun we obtain a cycle period of 33 years which is
somewhat longer than that in the Sun and half that obtained
by Ghizaru et al. (2010) from quite a different model exhibiting
similar solutions, but without equatorward migration. One of
the main differences from our earlier work (Käpylä et al. 2010)
is that we have omitted a stably stratified overshoot layer
beneath. This allowed us to cover almost an order of magnitude
larger density contrast within the convectively unstable layer.
Furthermore, convective energy transport now dominates over
radiative diffusion and a blackbody boundary condition is
used for the temperature (cf. Käpylä et al. 2011a). However,
compared with the Sun, our contours of differential rotation are

still too cylindrical and also the banana-cell pattern of radial
velocity might not be realistic. Both may be a consequence of
having a large Taylor number; even the turbulent Taylor number,
(ν/νt)2Ta = 9 Ta/Re2 ≈ 108, is rather large. Here, νt ≈ ηt0 has
been used as an estimate of the turbulent viscosity. The magnetic
activity in our model is distributed throughout the convection
zone, in contrast to the widely accepted flux-transport dynamo
mechanism (Dikpati & Charbonneau 1999) in which a one-cell
counterclockwise (north) meridional circulation is crucial. In
our model, meridional flows are convergent toward low latitudes
(see Figure 1) and may contribute to the resulting equatorward
migration. On the other hand, the negative radial differential
rotation in the near-surface shear layer (as anticipated by
Brandenburg 2005), which is here absent, is not the explanation
for the resulting equatorward migration. Clarifying this is an
important goal for future work.

The authors acknowledge the anonymous referee for
constructive comments on the manuscript. The simulations
were performed using the supercomputers hosted by CSC-IT
Center for Science Ltd. in Espoo, Finland, who are admin-
istered by the Finnish Ministry of Education. Financial sup-
port from the Academy of Finland grants Nos. 136189, 140970
(P.J.K.) and 218159, 141017 (M.J.M.), as well as the Swedish
Research Council grant 621-2007-4064, and the European
Research Council under the AstroDyn Research Project 227952
are acknowledged. The authors thank NORDITA for hospitality
during their visits.

REFERENCES

Brandenburg, A. 2005, ApJ, 625, 539
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J.

2010, ApJ, 711, 424
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J.

2011, ApJ, 731, 69
Browning, M. K., Miesch, M. S., Brun, A. S., & Toomre, J. 2006, ApJ,

648, L157
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073
Chan, K. L., & Sofia, S. 1986, ApJ, 307, 222
Dikpati, M., & Charbonneau, P. 1999, ApJ, 518, 508
Ghizaru, M., Charbonneau, P., & Smolarkiewicz, P. K. 2010, ApJ, 715, L133
Gilman, P. A. 1983, ApJS, 53, 243
Glatzmaier, G. A. 1985, ApJ, 291, 300
Hubbard, A., Rheinhardt, M., & Brandenburg, A. 2011, A&A, 535, A48
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