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ABSTRACT
Numerical simulations of the magnetorotational instability (MRI) with zero initial net flux in
a non-stratified isothermal cubic domain are used to demonstrate the importance of magnetic
boundary conditions. In fully periodic systems, the level of turbulence generated by the MRI
strongly decreases as the magnetic Prandtl number (Pm), which is the ratio of kinematic
viscosity and magnetic diffusion, is decreased. No MRI or dynamo action below Pm = 1 is
found, agreeing with earlier investigations. Using vertical field conditions, which allow the
generation of a net toroidal flux and magnetic helicity fluxes out of the system, the MRI is
found to be excited in the range 0.1 ≤ Pm ≤ 10, and the saturation level is independent of Pm.
In the vertical field runs, strong mean-field dynamo develops and helps to sustain the MRI.
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1 IN T RO D U C T I O N

The realization of the astrophysical significance of the magnetorota-
tional instability (MRI; Balbus & Hawley 1991), first discovered in
the context of Couette flow (Velikhov 1959; Chandrasekhar 1960),
seemed to resolve the long-standing problem of the turbulence-
driving mechanism in accretion discs. Early numerical simulations
produced sustained turbulence, large-scale magnetic fields and out-
ward angular momentum transport (e.g. Brandenburg et al. 1995;
Hawley, Gammie & Balbus 1995). These results also showed that
a significant qualitative difference exists between models where an
imposed uniform magnetic field is present as opposed to the situa-
tions where such field is absent: the saturation level of turbulence
and angular momentum transport are substantially higher when a
non-zero vertical net flux is present (e.g. Brandenburg et al. 1995;
Stone et al. 1996). Also the presence of an imposed net toroidal
field seemed to enhance the transport (Stone et al. 1996).

In the meantime, a lot of numerical work has been done with
zero net flux set-ups that omit stratification and adopt fully periodic
or perfectly conducting boundaries in order to study the saturation
behaviour of the MRI in the simplest possible setting (e.g. Fromang
& Papaloizou 2007; Fromang et al. 2007; Liljeström et al. 2009;
Korpi, Käpylä & Väisälä 2010). Due to the boundary conditions,
the initial net flux in conserved and no magnetic helicity fluxes out
of the system are allowed. The results of these investigations have
shown that as the numerical resolution of the simulations increases,
or equivalently as the explicit diffusion decreases, the level of tur-
bulence and angular momentum transport decrease, constituting a
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convergence problem for zero net flux MRI (Fromang et al. 2007).
Runs with explicit diffusion show that sustaining turbulence be-
comes increasingly difficult as the magnetic Prandtl number, Pm =
ν/η, where ν is the viscosity and η the magnetic diffusivity, is de-
creased (Fromang et al. 2007). Currently, the convergence problem
is without a definite solution. It has been suggested that this issue
could be related to the Pm dependence of the fluctuation dynamo
(e.g. Schekochihin et al. 2007). It has even been argued that the MRI
in periodic zero net flux systems would vanish in the limit of large
Reynolds numbers and that a large-scale dynamo would be needed
to sustain the MRI and turbulence (Vishniac 2009). Notably, large-
scale dynamos have no problems operating at low magnetic Prandtl
numbers as long as the relevant Reynolds and dynamo numbers
exceed critical values (Brandenburg 2009).

From the point of view of mean-field dynamo theory
(Brandenburg & Subramanian 2005), systems with fully periodic or
perfectly conducting boundaries are rather special. In such closed
set-ups, magnetic helicity, defined as a volume integral of A ·B,
where A is the vector potential and B = ∇ × A is the magnetic field,
is a conserved quantity in ideal magnetohydrodynamics (MHD). In
the presence of magnetic diffusion, magnetic helicity can change
only on a time-scale based on microscopic diffusivity, which is
usually very long in any astrophysical setting. Such a behaviour,
which has been captured in numerical simulations (Brandenburg
2001), is well described by simple mean-field models taking
into account magnetic helicity conservation (e.g. Blackman &
Brandenburg 2002). This would mean that generating appreciable
large-scale magnetic fields, which are possibly vital for sustaining
the MRI, can take a very long time. Furthermore, the saturation
value of the mean magnetic field decreases inversely proportional
to the magnetic Reynolds number (e.g. Cattaneo & Hughes 1996;
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Brandenburg 2001). In dynamo theory, this detrimental effect to
the large-scale dynamo is known as the catastrophic quenching
(Vainshtein & Cattaneo 1992).

The situation, however, changes dramatically if magnetic helicity
flux is allowed to flow out of the system. In particular, the Vishniac–
Cho flux (Vishniac & Cho 2001), which requires large-scale velocity
shear to be present and flows along the isocontours of shear, is a
potential mechanism that can drive a magnetic helicity flux out of the
system and alleviate catastrophic quenching. Indirect evidence for
its importance exists from convection simulations in a shearing box
set-up (Käpylä, Korpi & Brandenburg 2008, 2010b), where dynamo
excitation is easier in systems with boundaries that allow a net
magnetic helicity flux. However, these results can be explained by a
somewhat higher critical dynamo number in the perfect conductor
case (Käpylä et al. 2010b), which is a purely kinematic effect. More
dramatic differences between different boundary conditions are seen
in the non-linear saturation regime, with strong quenching of large-
scale magnetic fields in the perfect conductor case (Käpylä et al.
2010b). The reason for this behaviour is not yet clear, especially
in light of recent results of Hubbard & Brandenburg (2010) who
failed to find evidence of the Vishniac–Cho flux in a numerical
set-up similar to ours.

In this paper, we demonstrate that the boundary conditions play
a crucial role for the excitation of the MRI and the associated large-
scale dynamo. Following previous work that has shown that open
boundary conditions allow more efficient dynamo action (Käpylä
et al. 2008, 2010b), we model a system that is isothermal, non-
stratified and the magnetic field has a zero net flux initially. We
then apply vertical field (VF) boundary conditions which allow a
magnetic helicity flux through the vertical boundaries by letting the
magnetic field cross them. We show that if the MRI is excited, a
large-scale dynamo is also excited and that the saturation level of
the turbulence, large-scale magnetic field and angular momentum
transport are essentially independent of Pm. This is contrasted by
periodic simulations where we find a strong Pm dependence in
accordance with earlier studies. Our results also suggest that for a
given Pm, the results (level of turbulence and angular momentum
transport) are independent of the magnetic Reynolds number (see
also Fromang 2010).

The remainder of the paper is organized as follows. In Section 2,
we describe our model, and in Sections 3 and 4, we present our
results and conclusions.

2 TH E MO D EL

In an effort to keep the system as simple as possible, we assume that
the fluid is non-stratified and isothermal. The diffusion processes are
modelled with explicit Laplacian diffusion operators with constant
coefficients. A similar model was used by Liljeström et al. (2009)
and Korpi et al. (2010), although in these models higher order
hyperdiffusive operators were used instead of the Laplacian ones.
The computational domain is a cube with volume H3 = (2π)3. We
solve the usual set of hydromagnetic equations in this geometry:

DA
Dt

= −SAy x̂ − (∇U)T A − ημ0 J, (1)

D ln ρ

Dt
= −∇ · U, (2)

DU
Dt

= −SUx ŷ − c2
s ∇ ln ρ − 2 � × U

+ 1

ρ
( J × B + ∇ · 2νρS), (3)

where D/Dt = ∂/∂t + (U + U
(0)

) ·∇ is the advective time deriva-
tive, A is the magnetic vector potential, B = ∇ × A is the magnetic
field, J = μ−1

0 ∇ × B is the current density, μ0 is the vacuum
permeability, η and ν are the magnetic diffusivity and kinematic
viscosity, respectively, ρ is the density, U is the velocity and � =
�0(0, 0, 1) is the rotation vector. The large-scale shear is given by

U
(0) = (0, Sx, 0), with q = −S/�0 = 1.5, corresponding to Kep-

lerian rotation, in all runs. We use isothermal equation of state p =
c2

s ρ, characterized by a constant speed of sound, cs. In the present
models, we choose the sound speed so that the Mach number re-
mains of the order of 0.1 or smaller in order to minimize the effects
of compressibility. The rate of strain tensor S is given by

Sij = 1
2 (Ui,j + Uj,i) − 1

3 δij∇ · U, (4)

where the commas denote spatial derivatives. The initial magnetic
field can be written in terms of the vector potential as

A = A0 cos(kAx) cos(kAz)êy, (5)

where the amplitude of the resulting magnetic field that contains x
and z-components is given by B0 = kAA0. We use kA/k1 = 2

3 , �0 =
2
3 · 10−1csk1 and A0 = 1

3 · 10−1√μ0ρ0csk
−1
1 in all models.

The values of kA, �0 and A0 are selected so that both the
wavenumber with the largest growth rate, kmax = �0/uA = 2, where
uA = B0/

√
μ0ρ0 is the Alfvén velocity, and the largest unstable

wavenumber, kcrit = √
2qkmax ≈ 3.5, are well resolved by the grid.

The other condition for the onset of MRI, namely β > 1, where
β = 2μ0 p/B2

0 is the ratio of thermal to magnetic pressure, is also
satisfied as β = 1800 for the maximum values of the initial magnetic
field.

We use the PENCIL CODE1 which is a high-order explicit finite
difference method for solving the equations of compressible MHD.
Resolutions of up to 5123 are used; see Fig. 1 for a snapshot of a
high-resolution run.

2.1 Boundary conditions

In all models the y-direction is periodic and shearing-periodic
boundary conditions are used for the x-direction (Wisdom &
Tremaine 1988). On the z-boundaries, we use two sets of condi-
tions. First, we apply periodic boundaries (denoted as PER).

Secondly, we apply a VF condition for the magnetic field, which
is fulfilled when

Bx = By = Bz,z = 0, (6)

at the z-boundaries. In this case, we use impenetrable, stress-free
conditions for the velocity according to

Ux,z = Uy,z = Uz = 0. (7)

The novel property of the VF conditions is that they allow a net
toroidal flux to develop and allow magnetic helicity fluxes out of
the domain.

1 http://pencil-code.googlecode.com
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Figure 1. Velocity component Ux from the periphery of the domain for
Run B9 with Pm = 0.1, Cm = 1.5 × 104 and Re ≈ 9 × 103. See also
http://www.helsinki.fi/∼kapyla/movies.html for animations.

2.2 Units, non-dimensional quantities and parameters

Dimensionless quantities are obtained by setting

k1 = cs = ρ0 = μ0 = 1, (8)

where ρ0 is the mean density. The units of length, time, velocity,
density and magnetic field are then

[x] = k−1
1 , [t] = (csk1)−1, [U ] = cs ,

[ρ] = ρ0, [B] = √
μ0ρ0c2

s . (9)

The simulations are controlled by the following dimensionless pa-
rameters: the magnetic diffusion in comparison to viscosity is mea-

sured by the magnetic Prandtl number,

Pm = ν

η
. (10)

The effects of viscosity and magnetic diffusion are quantified, re-
spectively, by the parameters

Cm = cs

ηk2
1

and
Cm

Pm
= cs

νk2
1

. (11)

We also define the fluid and magnetic Reynolds numbers,

Re = urms

νk1
, Rm = urms

ηk1
= Pm Re, (12)

where urms is the root mean square (rms) value of the velocity, better
describing the non-linear outcome of the simulations. Furthermore,
we often measure the magnetic field in terms of the equipartition
field which is defined via

Beq =
√

μ0〈ρu2
rms〉, (13)

where the brackets denote volume averaging. A convenient measure
of the turbulent velocity is the Mach number

Ma = urms

cs
. (14)

We define the mean quantities as horizontal averages,

F i(z, t) = 1

LxLy

∫ Lx/2

−Lx/2

∫ Ly/2

−Ly/2
Fi(x, y, z, t) dx dy. (15)

Often an additional time average over the statically saturated state
is also taken. The size of error bars is estimated by dividing the
time series into three equally long parts. The largest deviation of
the average for each of the three parts from that over the full time
series is taken to represent the error.

3 R ESULTS

We perform two sets of simulations listed in Table 1, where we
use either periodic (Set A) or VF (Set B) boundary conditions. In

Table 1. Summary of the runs. The Mach number (Ma) is given by equation (14), B̃rms = Brms/Beq, and B̃i =
√

B
2
i /Beq, where Beq is defined via

equation (13). R̃xy = Rxy/(�0H )2 and M̃xy = (ρ0μ0)−1Mxy/(�0H )2, where Rxy and Mxy are computed from equations (17) and (18), respectively. Finally,
αSS is given by equation (16).

Run Grid Cm Rm Pm Ma B̃rms B̃x B̃y R̃xy (10−3) M̃xy (10−3) αSS(10−3) Boundary conditions

A0 1283 5 × 103 – 5 – – – – – – – PER
A1 1283 104 208 5 0.021 2.09 0.09 0.51 0.315 −2.162 2.477 ± 0.270 PER
A2 1283 1.5 × 104 326 5 0.022 2.04 0.08 0.54 0.378 −2.337 2.715 ± 0.208 PER
A3 2563 3 × 104 706 5 0.024 1.92 0.07 0.35 0.389 −2.564 2.953 ± 0.338 PER

A4 2563 3 × 104 377 2 0.013 1.78 0.04 0.31 0.102 −0.626 0.728 ± 0.212 PER
A5 2563 6 × 104 625 2 0.010 1.83 0.04 0.33 0.079 −0.441 0.520 ± 0.074 PER

A6 2563 3 × 104 211 1 0.007 1.28 0.02 0.34 0.011 −0.075 0.086 ± 0.022 PER
A7 2563 6 × 104 348 1 0.006 1.57 0.02 0.31 0.015 −0.088 0.103 ± 0.014 PER

B0 1283 1.5 × 104 – 20 – – – – – – – VF
B1 1283 1.5 × 104 557 10 0.037 2.76 0.12 2.30 0.866 −4.726 5.592 ± 0.325 VF
B2 1283 1.5 × 104 530 5 0.035 2.06 0.12 1.18 0.899 −4.802 5.702 ± 0.299 VF
B3 1283 1.5 × 104 632 2 0.042 2.33 0.12 1.91 1.140 −4.577 5.717 ± 0.071 VF
B4 1283 6.0 × 103 307 1 0.051 1.95 0.13 1.54 1.519 −5.463 6.982 ± 0.909 VF
B5 1283 1.5 × 104 637 1 0.042 2.24 0.12 1.82 1.164 −4.422 5.586 ± 0.526 VF
B6 2563 3.0 × 104 1242 1 0.041 1.77 0.11 0.97 1.018 −5.094 6.111 ± 0.560 VF
B7 2563 1.5 × 104 687 0.5 0.046 1.69 0.12 1.04 1.154 −4.988 6.142 ± 0.636 VF
B8 5123 1.5 × 104 719 0.2 0.048 1.55 0.11 0.87 1.111 −5.076 6.187 ± 1.068 VF
B9 5123 1.5 × 104 897 0.1 0.060 1.78 0.12 1.39 1.680 −6.148 7.828 ± 1.335 VF
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Figure 2. Mach number defined via equation (14) for Runs A3–A7. The
thick solid line shows the Mach number for Run B9 with Pm = 0.1 and VF
boundaries.

Set A, Runs A0–A3 were started with the initial conditions de-
scribed in Section 2, whereas Runs A4–A6 were continued from a
snapshot of Run A3 in the saturated state (see Fig. 2). Run A7 was
continued from a snapshot of Run A6 with a two-times lower diffu-
sivity at roughly 150Torb, where Torb = 2π/�0 is the orbital period.
The minimum duration of the runs in Set A is 100Torb. Runs in Set B
were all started from scratch and typically ran a significantly shorter
time than those in Set A, e.g. ∼30Torb in the low-Pm cases (see
Fig. 2), because final saturation occurs much faster.

3.1 Saturation level of the MRI

3.1.1 Periodic case

Earlier studies have shown that exciting the MRI in a periodic
zero net flux system becomes increasingly harder as the magnetic
Prandtl number is decreased (Fromang et al. 2007). Furthermore,
the saturation level of turbulence has been reported to decrease as a
function of Pm. This has been conjectured to be associated with the
difficulties of exciting a small-scale or fluctuation dynamo at low
Pm (e.g. Schekochihin et al. 2007). It is, however, unclear how the
saturation level of the small-scale dynamo is affected by this. It is
conceivable that at magnetic Reynolds numbers close to marginal, it
takes a long time to reach saturation and that the current simulations
have not been run long enough. On the other hand, if catastrophic
quenching is to be blamed, the mean magnetic field should decrease
as Rm−1 (e.g. Brandenburg & Subramanian 2005, and references
therein). A further possibility is the scenario suggested by Vishniac
(2009): in the absence of an outer scale for the magnetic field, the
microscopic diffusivities determine the minimum length-scale of
MRI, which leads to turbulence intensity decreasing proportional
to Rm−2/3.

We study this issue by performing runs keeping Pm fixed and
increasing the Reynolds numbers. We find that the saturation levels
of turbulence, measured by the Mach number and rms value of
magnetic field, are unaffected when Cm is increased by a factor
of 3 for the case Pm = 5 (Runs A1–A3) and by a factor of 2
for the cases Pm = 2 (Runs A4–A5) and Pm = 1 (Runs A6–A7;
see Table 1 and Fig. 3). Furthermore, the Mach number and rms
magnetic field, normalized with the rms value of the initial field,
increase roughly linearly with Pm. The Pm dependence of rms
magnetic field normalized to the equipartition field strength, listed
in Table 1, shows a much weaker trend. This is to be expected as

Figure 3. Mach number (upper panel) and magnetic energy (lower panel)
as functions of magnetic Prandtl number for periodic (triangles) and VF
(diamonds) boundary conditions. The magnetic field is normalized by the
rms value of the initial field.

Beq is proportional to the rms velocity which, on the other hand,
is produced by the magnetic field itself. Since the parameter range
of our simulations is rather limited, no definite conclusions can be
drawn. However, taking the results at face value, it appears that Pm,
not Cm, is the parameter that determines the saturation level in the
periodic zero net flux case. Recently, Fromang (2010) reached the
same conclusion independently for the case of Pm = 4. According
to our results, the catastrophic quenching and the diffusivity-limited
MRI length-scale scenarios would be ruled out. Although there is
the possibility that our calculations have not been run long enough,
the results seem to suggest the small-scale dynamo being harder to
excite as Pm decreases.

3.1.2 Vertical field case

We find that the saturation behaviour is markedly different when VF
boundary conditions are applied (Table 1 and Fig. 3). The saturation
level of turbulence depends only weakly on the magnetic Prandtl
number: the difference of the values of urms between Pm = 0.1 and
10 cases is roughly 50 per cent. Furthermore, the Mach number
decreases as function of Pm, the trend being weaker but opposite to
the periodic case. This is likely caused by the increase of viscosity
by 2 orders of magnitude rather than the intrinsic dependence of
the MRI on Pm. This conjecture is supported by the saturation
values of the magnetic fields which are independent of Pm (lower
panel of Fig. 3). The runs in Set B, however, seem to fall into
two distinct regimes of magnetic field strength, where the magnetic

C© 2011 The Authors, MNRAS 413, 901–907
Monthly Notices of the Royal Astronomical Society C© 2011 RAS



MRI-driven dynamos at low Pm 905

Figure 4. Horizontally averaged horizontal magnetic fields Bx (top panel)
and By (middle) for Run A3 with Cm = 3 × 104 and Pm = 5. The lower
panel shows the square of the rms value of the total magnetic field.

energy differs by roughly a factor of 2. The reason for this apparent
discrepancy is that a different mode of the large-scale magnetic field
is excited in the different branches (see below). Similar behaviour
of the large-scale dynamo has previously been seen in isotropically
forced turbulence (Brandenburg & Dobler 2002).

3.2 Large-scale magnetic fields

In the runs with periodic boundaries, we occasionally see the emer-
gence of large-scale magnetic fields with a sinusoidal dependence
on z (see Fig. 4), i.e. k/k1 = 1, in accordance with earlier investi-
gations (Lesur & Ogilvie 2008). Similar large-scale dynamos have
recently been reported from non-helically forced turbulence with
shear where the MRI is absent (e.g. Brandenburg et al. 2008; Yousef
et al. 2008). As in the forced turbulence case, a strong large-scale
field is not present at all times, and the fields undergo apparently
random sign changes that are not fully understood (see, however,
Brandenburg et al. 2008; Lesur & Ogilvie 2008). The intermittent
nature of the large-scale fields could also explain the apparent lack
of catastrophical quenching of the time-averaged mean magnetic
field (see Table 1).

In the VF runs, a strong large-scale dynamo is always excited con-
tinuously. The two branches of solutions that are visible in the total
magnetic energy (Fig. 3) are due to different modes of the large-scale
field. This is illustrated in Fig. 5 where the horizontally averaged
horizontal magnetic field components are shown as functions of
time for Run B1. As is common for dynamos with strong shear,
the streamwise component of the magnetic field is much stronger
than the cross-stream one. Although the initial condition of the
magnetic field is the same in all runs, the large-scale field, which
develops in the non-linear stage, can choose any of the available
wavenumbers consistent with the vertical boundary condition Bx =
By = 0. In practice, the dominant large-scale component is k/k1 =
1 or k/k1 = 1/2 in our simulations. The large-scale dynamo
tends to accumulate energy at the smallest possible wavenumber

Figure 5. Same as Fig. 4 but for Run B1 with Cm = 1.5 × 104 and Pm =
10.

(Brandenburg 2001), i.e. the largest spatial scale. However, if the
dominant mode is on some intermediate scale initially, those modes
can also be long-lived (Brandenburg & Dobler 2002). Ultimately,
the large-scale field evolves towards final saturation where the
largest possible scale dominates, which was seen in Brandenburg
& Dobler (2002) and in some of our runs (cf. Fig. 5). The fact
that the magnetic energy in Runs B2, B6, B7 and B8 is smaller
is due to the fact that the large-scale field is predominantly of the
k/k1 = 1 flavour and the final saturation of the large-scale magnetic
field has not yet occurred. Lesur & Ogilvie (2008) found that the
toroidal large-scale magnetic field generated in their simulations
is close to that yielding the maximum growth rate for an m = 1
non-axisymmetric instability. Using their notation, we find a simi-
lar result so that Byky/(−S

√
5/12

√
μ0ρ) ≈ 0.6 for k/k1 = 1 and

1.2 for k/k1 = 1/2, using ky/k1 = 1 for the m = 1 mode. However,
the full significance of this result is as of yet unclear.

Although the source of the turbulence and the nature of the
dynamos (kinematic versus non-linear) is different between the
non-helically forced turbulence simulations (e.g. Brandenburg et al.
2008; Yousef et al. 2008) and the non-stratified MRI runs such as
those presented here, it is conceivable that the large-scale field gen-
eration mechanism is the same. Since the periodic system is homo-
geneous, the cause of the large-scale fields cannot be the α-effect of
mean-field dynamo theory (Moffatt 1978; Krause & Rädler 1980),
which is in simple systems proportional to the density gradient or the
turbulence inhomogeneity due to boundaries (e.g. Giesecke, Ziegler
& Rüdiger 2005; Käpylä, Korpi & Brandenburg 2010a). However,
a fluctuating α with zero mean can also drive a large-scale dynamo
when shear is present (e.g. Sokolov 1997; Vishniac & Brandenburg
1997; Silant’ev 2000; Proctor 2007). This is the most likely source
of the large-scale magnetic fields in the present case. Furthermore,
it is possible that the shear–current and � ×J effects can drive a
large-scale dynamo (Rädler 1969; Rogachevskii & Kleeorin 2003,
2004), although present evidence from numerical models does not
support this (Brandenburg et al. 2008).

C© 2011 The Authors, MNRAS 413, 901–907
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Figure 6. Horizontally averaged kinetic helicity H from Run B7. The inset
shows the volume averaged rms value of H. The shaded area denotes the
error estimates.

In the VF runs, the impenetrable stress-free z-boundaries make
the turbulence inhomogeneous near the boundary. This leads to
the generation of mean kinetic helicity H(z) = ω · u, where ω =
∇ × u is the vorticity. The quantity H is important, because the
mean-field α-effect is, in simple settings, proportional to it (e.g.
Krause & Rädler 1980). Such contributions, however, will not show
up in volume averages because the sign of the helicity, and thus
of the α-effect, are different near the different boundaries. Fig. 6
shows the horizontally averaged kinetic helicity for Run B7. Here,
we average also in time over the saturated state of the run. In most
of the volume, the kinetic helicity is consistent with zero, although
there are regions close to the boundaries where non-zero mean
values are present. The rms value of H, however, is at least five
times greater than its mean (see the inset of Fig. 6). Note also
that the normalization factor contains the integral scale k1. A more
proper definition would be to use the wavenumber where turbulent
energy peaks which is likely at least a factor of few greater than k1.
Thus our estimates for the normalized helicity can be considered
as upper limits. The rather small values of mean helicity and the
dominance of fluctuations suggest that the generation mechanism
of the large-scale fields could indeed be the incoherent α–shear
dynamo. However, a conclusive answer can only be obtained by
extracting the turbulent transport coefficients and by performing
mean-field modelling of the same system (see e.g. Gressel 2010).

3.3 Angular momentum transport

The main effect of turbulence in astrophysical discs is to enhance
diffusion which enables efficient accretion. In accretion disc theory,
it is customary to parametrize the turbulent viscosity ν t in terms
of the Shakura–Sunyaev viscosity parameter αSS, which relates ν t

with the local gas pressure (Shakura & Sunyaev 1973).
We define the Shakura–Sunyaev viscosity parameter as

(Brandenburg, Dintrans & Haugen 2004)

αSS = [Rxy − Mxy/(μ0ρ)]

(�0H )2
, (16)

where

Rxy ≡ 〈uxuy〉 = 〈UxUy〉 − 〈UxUy〉 (17)

is the Reynolds stress and

Mxy ≡ 〈bxby〉 = 〈BxBy〉 − 〈BxBy〉, (18)

Figure 7. Viscosity parameter αSS as a function of Pm for the runs listed
in Table 1. The dotted lines show αSS = const = 6 × 10−3 and αSS ∝
Pm2.0 for reference.

the Maxwell stress and where the angular brackets denote volume
averaging. Here, we decompose the velocity and magnetic field
into their mean (U, B), taken here as the horizontal average, and
fluctuating (u, b) parts. The mean velocities show no systematic
large-scale pattern and the remaining signal U ∼ O(0.05urms) is
likely a residual of averaging over a finite number of cells. The
contribution of mean flows to the angular momentum transport and
the dynamo process is thus likely to be negligible.

For the runs in Set A, we find essentially the same scaling, con-
sistent with Pm2.0, with magnetic Prandtl number as in the case
of the turbulent kinetic and magnetic energies (see Fig. 7). This
is consistent with the mixing length estimate of turbulent viscos-
ity which is proportional to the turbulence intensity (e.g. Snellman
et al. 2009). The numerical values of αSS decrease from ≈10−3 for
Pm = 5 to αSS ≈ 10−4 for Pm = 1. In Set B, on the other hand, αSS

is essentially independent of magnetic Prandtl number. The value of
αSS is consistently of the order of 6 × 10−3, which is significantly
greater than that found in runs with periodic boundaries. Here, the
qualitative behaviour of αSS resembles that of the turbulent kinetic
energy, whereas the two different dynamo modes seen in magnetic
energy are not visible in the angular momentum transport.

3.4 Discussion

A possible clue to understanding the convergence problem in zero
net flux simulations comes from MRI models with density strati-
fication: in them the level of turbulence does converge when the
Reynolds numbers are increased (Davis, Stone & Pessah 2010),
even with perfect conductor of periodic boundaries. Furthermore,
such set-ups exhibit a large-scale dynamo (e.g. Brandenburg et al.
1995; Stone et al. 1996; Gressel 2010) where the magnetic helicity
changes sign at the mid-plane (Gressel 2010).

Recent numerical results from a different setting suggest that a
diffusive flux of magnetic helicity also exists (Mitra et al. 2010).
Such a flux can alleviate catastrophic quenching by transporting
oppositely signed magnetic helicity to the mid-plane where anni-
hilation occurs. This could explain the successful convergence of
the stratified MRI runs. In the non-stratified case, with periodic or
perfectly conducting boundaries, however, no net flux of magnetic
helicity occurs and the large-scale dynamo can be catastrophically
quenched, shutting off the MRI. When a flux is allowed by chang-
ing to VF boundary conditions, this limitation is removed and the
large-scale dynamo can operate without hindrance. However, this

C© 2011 The Authors, MNRAS 413, 901–907
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hypothesis requires further study and more careful analysis of the
helicity fluxes that we postpone to a future publication.

4 C O N C L U S I O N S

We present three-dimensional numerical simulations of the MRI in
an isothermal non-stratified set-up with zero net flux initially. Using
fully periodic boundaries, which do not allow the generation of a
mean toroidal flux or magnetic helicity fluxes out of the system,
we encounter the convergence problem (Fromang et al. 2007) of
the MRI: turbulent kinetic and magnetic energies, and the angular
momentum transport increase approximately proportional to the
magnetic Prandtl number. Intermittent large-scale magnetic fields
are observed in the periodic runs. Increasing the Reynolds numbers
moderately at a given Pm does not appear to markedly change the
results in the saturated state.

When VF boundary conditions, allowing the generation of a mean
flux and a magnetic helicity flux, are used, the MRI is excited at
least in the range 0.1 ≤ Pm ≤ 10 for our standard value of Cm =
1.5 × 104. We find that the saturation level of the turbulence and
the angular momentum transport are only weakly dependent on the
Prandtl number and that strong large-scale fields are generated in all
cases. The Shakura–Sunyaev viscosity parameter has consistently
a value of αSS ≈ 6 × 10−3 in the VF case. Exploring even lower
values of Pm is infeasible at the moment due to prohibitive computa-
tional requirements, but there are no compelling arguments against
a large-scale dynamo operating at low Pm (Brandenburg 2009). We
conjecture that the operation of the MRI at low Pm is due to the
efficient large-scale dynamo in the system. It is conceivable that
the dynamo only works if magnetic helicity is allowed to escape
(see also Vishniac 2009) or annihilate at the disc mid-plane due
to an internal diffusive flux (Mitra et al. 2010). However, measur-
ing the magnetic helicity fluxes in the presence of boundaries is
difficult due to the fact that they are in general gauge dependent
(e.g. Brandenburg, Dobler & Subramanian 2002; Hubbard &
Brandenburg 2010).

The current results highlight the close connection between dy-
namo theory and the theory of magnetized accretion discs (see also
Blackman 2010) and the importance of studying the results in a
common framework (e.g. Gressel 2010). Clearly, a more thorough
study is needed in order to substantiate the possible role of magnetic
helicity fluxes for the excitation and saturation of the MRI. We plan
to address these issues in future publications.
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