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ABSTRACT10

We address the question whether the magnetorotational instability (MRI) can operate in the near-11

surface shear layer (NSSL) of the Sun and how it affects the interaction with the dynamo process.12

Using hydromagnetic mean-field simulations of αΩ-type dynamos in rotating shearing-periodic boxes,13

we show that for negative shear, the MRI can operate above a certain critical shear parameter. This14

parameter scales inversely with the equipartition magnetic field strength above which α quenching set15

in. Like the usual Ω effect, the MRI produces toroidal magnetic field, but in our Cartesian cases it16

is found to reduce the resulting magnetic field strength and thus to suppress the dynamo process. In17

view of the application to the solar NSSL, we conclude that the turbulent magnetic diffusivity may18

be too large for the MRI to be excited and that therefore only the standard Ω effect is expected to19

operate.20

Keywords: Magnetic fields (994); Hydrodynamics (1963)21

1. INTRODUCTION22

The magnetorotational instability (MRI) provides a23

source of turbulence in accretion discs, where it feeds24

on Keplerian shear to turn potential energy into kinetic25

and magnetic energies; see Balbus & Hawley (1998) for a26

review. For the MRI to be excited, the angular velocity27

Ω must decrease with increasing distance ϖ from the28

rotation axis, i.e., ∂Ω/∂ϖ < 0. There must also be29

a moderately strong magnetic field. This condition is30

obeyed not only in accretion discs, but also in the Sun,31

where both requirements may be satisfied in the near32

surface shear layer (NSSL), the outer 4% of the solar33

radius (Schou et al. 1998). This motivates the question34

whether the MRI might also be excited in stars like the35

Sun (Balbus & Hawley 1994; Urpin 1996; Masada 2011;36

Kagan & Wheeler 2014; Wheeler et al. 2015; Vasil et al.37

2024). In addition to the Sun, the application to proto-38

neutron stars is a particularly prominent one (Reboul-39

Salze et al. 2022).40

In the Sun’s outer 30% by radius there is convection41

converting part of the Sun’s thermal energy into kinetic42

energy. The nonuniform rotation of the Sun is explained43

by the fact that the convection is anisotropic such that44

solid-body rotation is no longer a solution to a rotating45

fluid even in the absence of external torques (Lebedin-46

skii 1941; Wasiutynski 1946; Kippenhahn 1963; Köhler47

1970; Rüdiger 1980; Brandenburg et al. 1990). This48

causes also the emergence of the aforementioned NSSL49

(Rüdiger et al. 2014; Kitchatinov 2016, 2023). In addi-50

tion, there are small-scale (Meneguzzi & Pouquet 1989;51

Nordlund et al. 1992; Brandenburg et al. 1996; Catta-52

neo 1999) and large-scale (Käpylä et al. 2008; Hughes53

& Proctor 2009; Masada & Sano 2014; Bushby et al.54

2018) magnetic fields as a result of the convective tur-55

bulence. The presence of radial stratification in density56

and/or turbulent intensity, together with global rota-57

tion, causes the occurrence of large-scale magnetic fields58

(Moffatt 1978; Parker 1979; Krause & Rädler 1980; Zel-59

dovich et al. 1983). Thus, in the Sun, the two ingredients60

of the MRI—differential rotation and magnetic fields—61

are ultimately caused by the underlying convection. To62

address the question of whether or not the MRI is ex-63

cited and whether it contributes to shaping the Sun’s64

magnetic field to display equatorward migration of a65
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global large-scale magnetic field, we need to separate the66

MRI-driven flows from the convection. One approach is67

to ignore convection, but to retain some of its secondary68

effects, i.e., the NSSL with ∂Ω/∂ϖ < 0 and magnetic69

fields produced by convection; see the discussion by Vasil70

et al. (2024) and an appraisal by Zweibel (2024). An-71

other approach, the one taken here, is to average over72

the convection. By employing azimuthal averages, one73

is left with a stationary, nonturbulent background. Fur-74

thermore, correlations among different components of75

the fluctuating parts of the turbulent velocity and mag-76

netic fields emerge that are parameterized in terms of77

(i) diffusive contributions, such as turbulent viscosity78

and turbulent magnetic diffusion, and (ii) non-diffusive79

contributions such as Λ and α effects, which are chiefly80

responsible for producing differential rotation and large-81

scale magnetic fields in the Sun (Rüdiger & Hollerbach82

2004). These effects explain in a self-consistent way the83

NSSL and the large-scale magnetic field by solving the84

averaged equations (Pipin 2017); see Brandenburg et al.85

(2023) for a review.86

It would in principle be possible to study the interac-87

tion between the MRI and the dynamo in fully three-88

dimensional turbulence simulations. However, the es-89

sentials of these processes may well be captured in a90

mean-field approach. Using direct numerical simulations91

with forced turbulence, Väisälä et al. (2014) demon-92

strated that the onset of the MRI is consistent with what93

is expected from mean-field estimates. In particular, the94

onset requires larger magnetic Reynolds numbers than95

in the ideal case due to the action of turbulent diffusion.96

Averaging over the convective motions of the Sun has97

been done previously in the context of mean-field hy-98

drodynamics with the Λ effect. When including com-99

pressibility and thermodynamics, it was noticed that the100

equations display an instability (Gierasch 1974; Schmidt101

1982; Chan et al. 1987; Rüdiger & Tuominen 1991;102

Rüdiger & Spahn 1992), whose nature was not under-103

stood initially. However, this later turned out to be an104

example where averaging over the convection leads to105

mean-field equations that themselves are susceptible to106

an instability, namely the onset of convection. This de-107

pends on how close to adiabatic the mean-field state is108

and what the values of the turbulent viscosity and tur-109

bulent thermal diffusivities are (Tuominen et al. 1994).110

When magnetic fields are present and sustained by111

a dynamo, the full system of magnetohydrodynamic112

(MHD) equations may be unstable to the MRI. We must113

emphasize that we are here not talking about the pre-114

viously studied case where the MRI provides the source115

of turbulence, which then reinforces an initial magnetic116

field by dynamo action through a self-sustained doubly-117

positive feedback cycle (Brandenburg et al. 1995; Haw-118

ley et al. 1996; Stone et al. 1996). Even in that case, a119

mean-field description may be appropriate to quantify120

the nature of a large-scale dynamo governed by rotation121

and stratification (Brandenburg & Sokoloff 2002; Bran-122

denburg 2005a; Gressel 2010). However, such a descrip-123

tion can only be an effective one, because the level of124

turbulence is unknown and emerges only when solving125

the underlying, essentially nonlinear dynamo problem126

(Rincon et al. 2007; Lesur & Ogilvie 2008; Herault et al.127

2011).128

In the present paper, we focus on the simpler case129

where a mean-field dynamo is assumed given, but po-130

tentially modified by the MRI. Ideally, in view of solar131

applications, it would be appropriate to consider an ax-132

isymmetric hydromagnetic mean-field dynamo with dif-133

ferential rotation being sustained by the Λ effect. Such134

systems have been studied for a long time (Brandenburg135

et al. 1990, 1991, 1992; Kitchatinov & Rüdiger 1995;136

Rempel 2006; Pipin 2017; Pipin & Kosovichev 2019),137

but no MRI was ever reported in such studies. One138

reason for this might be that it is hard to identify the139

operation of the MRI in a system that is already gov-140

erned by a strong instability which is responsible for141

producing the magnetic field. We therefore take a step142

back and consider here a system in Cartesian geometry.143

In Section 2, we motivate the details of our model and144

present the results in Section 3. We conclude in Section145

4.146

2. OUR MODEL147

2.1. Shearing box setup148

Following the early work of Balbus & Hawley (1991,149

1992) and Hawley & Balbus (1991, 1992), we study the150

MRI in a shearing–periodic box, where x is the cross-151

stream direction, y is the streamwise or azimuthal direc-152

tion, and z is the spanwise or vertical direction. As in153

Väisälä et al. (2014), we consider the mean-field equa-154

tions for azimuthally averaged velocities U(x, z, t), the155

magnetic field B(x, z, t), and the mean density ρ(x, z, t).156

The system is rotating with the angular velocity Ω, and157

there is a uniform shear flow V (x) = (0, Sx, 0), so the158

full velocity is therefore given by V +U . We consider the159

system to be isothermal with constant sound speed cs,160

so the mean pressure p(x, z, t) is given by p = ρc2s . The161

mean magnetic field is expressed in terms of the mean162

magnetic vector potential A(x, z, t) with B = ∇×A to163

satisfy ∇ · B = 0. The full system of equations for ρ,164

U , and A is given by (Brandenburg et al. 1995, 2008)165

D ln ρ

Dt
= −∇ ·U (1)166
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167

DU

Dt
=−SUxŷ − 2Ω×U − c2s∇ ln ρ168

+
[
J ×B +∇ · (2νTρS)

]
/ρ, (2)169

170

∂A

∂t
= −SAyx̂+U ×B + αB − ηTµ0J , (3)171

where D/Dt = ∂/∂t+U ·∇ is the advective derivative,172

S is the rate-of-strain tensor of the mean flow with the173

components Sij = (∂iU j+∂jU i)/2−δij∇·U/3, Ω is the174

angular velocity, S = −qΩ is the shear parameter, and175

J = ∇×B/µ0 is the mean current density with µ0 being176

the vacuum permeability. There are three mean-field177

parameters: the turbulent viscosity νT, the turbulent178

magnetic diffusivity ηT, and the α effect. Note that in179

our two-dimensional case, V ·∇ = Sx∂y = 0. In some180

cases, we allow for α quenching and write181

α = α0/(1 +B
2
/B2

eq), (4)182

where Beq is the equipartition field strength above which183

α begins to be affected by the feedback from the Lorentz184

force of the small-scale magnetic field (Ivanova & Ruz-185

maikin 1977). We sometimes refer to this as microphys-186

ical feedback to distinguish it from the macrophysical187

feedback from the Lorentz force of the large-scale mag-188

netic field, J × B. This type of saturation is some-189

times also called the Malkus–Proctor mechanism, after190

the early paper by Malkus & Proctor (1975), who em-191

ployed spherical geometry.192

In the absence of α quenching (Beq → ∞), the193

only possibility for the dynamo to saturate is via the194

Lorentz force from the mean magnetic field, J ×B, i.e.,195

the Malkus–Proctor mechanism. Also relevant to our196

present work is that of Schuessler (1979), who consid-197

ered Cartesian geometry. Our solutions, however, are198

simpler still in that we employ periodic boundary con-199

ditions in most cases.200

A simple way to identify the operation of the MRI201

in a dynamo is by comparing models with positive and202

negative values of q, because the MRI only works in the203

range 0 < q < 2. Note also that for q > 2, the hy-204

drodynamic state is Rayleigh-unstable and results in an205

exponentially growing shear flow, Uy(z), without ever206

saturating in a periodic system. In all of our cases, we207

consider q = ±3/2. For the solar NSSL, however, we208

have q = 1 (Barekat et al. 2014). Smaller values of q re-209

duce the stress by a factor q/(2− q) (Abramowicz et al.210

1996), but the MRI is qualitatively unchanged.211

Some of our models with positive shear (S > 0 or212

q < 0), where the MRI is not operating, do not saturate213

in the absence of α quenching. To check whether this is214

a peculiarity of the use of periodic boundary conditions,215

we also consider models with what is called a vertical216

field condition, i.e.,217

Bx = By = ∂zBz = 0, (5)218

which corresponds to ∂zAx = ∂zAy = Az = 0. Note219

that with this boundary condition, the normal compo-220

nent of the Poynting vector E × B/µ0, where E =221

ηTµ0J−U×B is the mean electric field, vanishes. Thus,222

energy conservation is still preserved.223

2.2. Input and output parameters224

We consider a two-dimensional domain Lx × Lz and225

define k1 = 2π/Lz as our reference wavenumber, which226

is the lowest wavenumber in the z direction. The lowest227

wavenumber in the x direction is k1x = 2π/Lx. Our228

main input parameters are229

Cα = α0/ηTk1, CΩ = S/ηTk
2
1, (6)230

as well as q = −S/Ω and Beq, which can be expressed231

via the corresponding Alfvén speed, veqA ≡ Beq/
√
µ0ρ0,232

in nondimensional form as233

Beq ≡ veqA k1/Ω. (7)234

In all our cases, we assume PrM ≡ νT/ηT = 1 for the235

turbulent magnetic Prandtl number.236

Diagnostic output parameters are the energies of the237

mean fields that are derived either under yz or xy av-238

eraging, EX
M and EZ

M, respectively. Those are sometimes239

normalized by Eeq
M ≡ B2

eq/2µ0. We also monitor var-240

ious parameters governing the flow of energy in our241

system. These include the mean kinetic and magnetic242

energy densities, EK = ⟨ρU2
/2⟩ and EM = ⟨B2

/2µ0⟩,243

their time derivatives, ĖK and ĖM, the kinetic and244

magnetic energy dissipation rates, ϵK = ⟨2ρνTS2⟩ and245

ϵM = ⟨ηTµ0J
2⟩, the fluxes of kinetic and magnetic en-246

ergy tapped from the shear flow, WK = ⟨ρUxUyS⟩ and247

WM = −⟨BxByS/µ0⟩, the work done by the pressure248

force, WP = −⟨U · ∇p⟩ as well as the work done by249

the α effect, Wα = ⟨αJ · B⟩, and the work done by250

the Lorentz force, WL = ⟨U · (J ×B)⟩. Figure 1 gives251

a graphical illustration showing the flow of energy in a252

hydromagnetic mean-field dynamo with shear.253

For a uniform vertical magnetic field, B0 = (0, 0, B0),254

the MRI is excited when vA0k1 <
√
2ΩS, where vA0 =255

B0/
√
µ0ρ0 is the Alfvén speed of the uniform vertical256

magnetic field. The MRI can be modeled in one di-257

mension with ∇ = (0, 0, ∂z). Such a one-dimensional258

setup could also lead to what is called an αΩ dynamo,259

which means that the mean radial or cross-stream field260

Bx is regenerated by the α effect and the mean toroidal261
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Figure 1. Flow of energy in a hydromagnetic mean-field
dynamo.

or streamwise field By is regenerated by the Ω effect or,262

more precisely, the shear flow V (x). One sometimes also263

talks about an α2 dynamo if there is no shear, or about264

an α2Ω dynamo if both α effect and shear contribute to265

regenerating By.266

In the one-dimensional case with ∇ = (0, 0, ∂z) and267

periodic boundary conditions, the α2 dynamo is excited268

when Cα > 1, while the αΩ dynamo is excited for269

CαCΩ > 2 (Brandenburg & Subramanian 2005). Be-270

cause of ∇ ·B = 0, the resulting magnetic field is then271

always of the form B(z) = (Bx, By, 0), i.e., Bz = 0, so272

it is not possible to have the MRI being excited.273

This would change if the dynamo also had x extent.274

To see this, we consider for a moment a one-dimensional275

domain with ∇ = (∂x, 0, 0). In that case, an α2 dynamo276

with B(x) = (0, By, Bz) can be excited, allowing Bz ̸=277

0. It would be excited when α0/ηTk1x ≡ Cαk1/k1x > 1,278

i.e., Cα > k1x/k1 = Lz/Lx. Figure 2 gives a graphical279

illustration of the generation of By from Bx through280

the Ω effect and from Bz through the MRI, and the281

generation of both Bx and Bz from By through the α282

effect.283

To allow for the possibility that in our two-284

dimensional domain such a dynamo is preferred over one285

with z extent, we choose our domain to be oblate, e.g.,286

Lx/Lz = 2. We solve the equations with the Pencil287

Code (Pencil Code Collaboration et al. 2021) using nu-288

merical resolutions between 64× 128 to 256× 512 mesh289

points, i.e., the mesh spacings in the x and z directions290

are always kept the same.291

2.3. Dynamo types in the Rädler diagram292

Figure 2. Sketch illustrating the generation of By from
Bx through the Ω effect and from Bz through the MRI, and
the generation of both Bx and Bz from By through the α
effect.

Figure 3. Rädler diagram for the α2Ω dynamo with z
extent (solid line) and the α2 dynamo with x extent in a do-
main with Lz/Lx = 1/2 (horizontal dash-dotted line). The
onset location in the pure αΩ approximation (CαCΩ = 2) is
shown as dashed lines.

It is convenient to discuss solutions in the Cα–CΩ293

plane; see Figure 3. Such diagrams were extensively ex-294

ploited by Rädler (1986), which is why we refer to such295

plots in the following as Rädler diagrams. Rädler con-296

sidered dynamos in spherical geometry where α changed297

sign about the equator, so the solutions were either sym-298

metric or antisymmetric about the equator. In addition,299

they could be axisymmetric or antisymmetric and they300

could also be oscillatory or stationary.301

For a one-dimensional α2Ω dynamo, the complex302

growth rate is (α2k2− ikαS)1/2−ηTk
2 (Brandenburg &303

Subramanian 2005). For the marginally excited state,304

we require the real part of the complex growth rate to305

vanish. This yields306

CΩ = Cα

√
(2/C2

α − 1)2 − 1, (8)307

which is the solid line shown in Figure 3.308

The Rädler diagram gives a graphical overview of the309

differences between dynamos with positive and negative310

shear, i.e., positive and negative values of CΩ. The MRI311

is only possible for CΩ < 0 (negative shear), while for312
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Figure 4. Time dependence of EM (dotted black line), EZ
M

(solid blue line) and EX
M (dashed red line), all normalized by

Eeq
M , and By versus t and z for a fratricidal dynamo (Run F)

with Cα = 1, CΩ = 150, q = −3/2 (positive shear) and
Beq → ∞ (no α quenching). Here, By has been normalized
by its instantaneous rms values so as to see the dynamo wave
also during the early exponential growth phase and during
the late decay phase.

CΩ > 0, we just expect ordinary αΩ dynamo waves.313

This expectation, however, does not apply to dynamos314

in periodic domains with α0 = const, as was first found315

in the fully three-dimensional turbulence simulations of316

Hubbard et al. (2011). Their αΩ dynamo started off as317

expected, but at some point during the early, nonlinear318

saturation phase of EX
M , the dynamo wave stopped and a319

new solution emerged that had a cross-stream variation,320

i.e., EX
M became strong and suppressed EZ

M.321

A similar type of exchange of dynamo solutions in322

the nonlinear regime was first found by Fuchs et al.323

(1999) while investigating hydromagnetic dynamos with324

Malkus–Proctor feedback in a sphere. They found self-325

killing and self-creating dynamos due to the presence of326

different stable flow patterns where the magnetic field327

causes the solution to respond to a newly emerged flow328

pattern after the initial saturation. This was thus the329

first example of what then became known as a suicidal330

dynamo.331

In analogy with the suicidal dynamos, the dynamos332

found by Hubbard et al. (2011) were called fratricidal333

dynamos. This property of dynamos in a periodic do-334

main emerged as a problem because αΩ dynamos in a335

Figure 5. Similar to Figure 4, but for a suicidal dynamo
with Cα = 0.49 and CΩ = 7.5 (Run B).

periodic domain could only be studied for a limited time336

interval before they disappeared (Karak & Brandenburg337

2016).338

3. RESULTS339

We begin with the discussion of fratricidal and suici-340

dal dynamos, but emphasize that those have so far only341

been found in periodic systems for CΩ > 0, i.e., for pos-342

itive shear. Thus, to examine the effect of the MRI, we343

compare solutions with positive and negative values of344

CΩ using both periodic and non-periodic domains.345

3.1. Fratricidal and suicidal mean-field dynamos346

Here we show that both fratricidal and suicidal dy-347

namos can also occur in a mean-field context see Fig-348

ures 4 and 5. The α2 sibling is here possible because349

Cα > Lz/Lx = 0.5. This is shown in Figure 4, where we350

plot EZ
M and EX

M vs time, and By vs t and z. In the fol-351

lowing, this case is referred to as Run F. We see that EZ
M352

grows exponentially starting from a weak seed magnetic353

field. The zt diagram in Figure 4 shows the usual dy-354

namo waves. When the dynamo approaches saturation,355

EX
M also begins to grow exponentially, but at a rate that356

it is much larger than the growth rate of EZ
M. When EX

M357

reaches about 10−3Eeq
M , EZ

M declines rapidly and is then358

overtaken by EX
M . At that moment, the dynamo waves359

cease and a new transient commences with a rapidly360

varying time dependence, but at a very low amplitude;361

see the zt diagram of Figure 4 for 2.5 < tηTk
2
1 < 4.5.362
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Figure 6. Comparison of solutions for CΩ < 0 (Runs C, E, and G; left panels) and CΩ > 0 (Runs D, F, and H; right panels)
for periodic boundary conditions (top and middle) and vertical field boundary conditions (bottom). As in the upper panels of
Figures 4 and 5, EM (dotted black line), EZ

M (solid blue line), and EX
M (dashed red line), normalized by Eeq

M , are shown versus t.

For Cα < 0.5, the α2 sibling with EX
M ̸= 0 is impos-363

sible. Surprisingly, it turned out that the αΩ dynamo364

can then still be killed by a secondary EX
M , but such as365

state with EX
M ̸= 0 cannot be sustained and decays on an366

ohmic time scale; see Figure 5 for Run B. It is therefore367

an example of a suicidal dynamo. We see that EX
M de-368

cay towards zero, and that the dynamo wave then just369

disappears. By that time, EZ
M has already become very370

small and has disappeared within the noise.371

3.2. Comparison of positive and negative shear372

To identify the effect of the MRI, it is convenient to373

compare solutions for positive and negative shear. In374

Figure 6, we plot the time evolutions of EM, EX
M , and375

EZ
M for Runs C–G with different values of Cα and CΩ, as376

well as periodic and vertical field boundary conditions.377

We see that, regardless of the boundary conditions, the378

cases with negative shear, where the MRI is possible, all379

have less magnetic energy than the cases with positive380

shear. Thus, the action of the MRI always diminishes381

dynamo action.382

Various parameters related to the flow of energy are383

summarized in Table 1. We see that WL is always posi-384

tive, i.e., magnetic energy goes into kinetic energy. But385

we also see that whenever CΩ is negative and the MRI386

is excited, WL and ϵM are always much larger than for387

positive values of CΩ, when the MRI does not operate.388

It is remarkable that in the latter case, when only the389

standard Ω effect operates, WK is often even negative.390

Note also that WP is not being given, because its value391

is very small. Likewise, ĖM and ĖK are small and not392
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Table 1. Summary of the runs. The column BC gives 0 (1) for periodic (vertical field) boundary conditions. For runs without
α quenching we have B−1

eq = 0. EM and EK are given in units of ρ0Ω
2/k2

1. The energy fluxes WM, WK, Wα, WL, ϵM, ϵK, as well
as gain and losses are in units of ηTk

2
1EM.

Run BC B−1
eq Cα CΩ EM EK WM WK Wα WL ϵM ϵK gain loss

A 0 0 0.49 −7.5 6.45 0.83 2.4 0.280 0.480 0.13 2.8 0.41 3.2 3.2

B 0 0 0.49 7.5 2.25 4.35 0.0 −0.000 0.490 0.00 0.5 0.00 0.5 0.5

C 0 0 0.20 −15 4.48 0.18 2.3 0.064 0.085 0.03 2.4 0.10 2.5 2.5

D 0 0 0.20 15 1.40 0.04 2.0 −0.001 0.080 0.04 2.0 0.04 2.0 2.1

E 0 0 1.00 −150 0.08 0.55 39.0 10.000 2.000 6.00 35.0 16.00 51.0 51.0

F 0 0 1.00 150 2.83 1.52 0.3 0.002 1.700 0.40 1.9 0.36 2.1 2.2

G 1 0 1.00 −150 0.40 0.64 20.0 5.600 1.300 2.00 20.0 6.60 27.0 27.0

H 1 0 1.00 150 0.55 0.49 8.8 −0.340 0.780 3.50 6.6 3.10 9.2 9.7

I 0 0 0.20 −150 0.19 0.59 7.3 0.630 0.048 2.00 5.9 2.70 7.9 8.6

J 0 0 0.20 150 0.78 0.27 3.5 −0.028 0.029 0.77 3.0 0.76 3.5 3.7

K 0 1 0.49 −7.5 0.34 0.00 1.8 0.000 0.170 0.00 2.0 0.00 2.0 2.0

L 0 1 0.49 −30 2.41 0.00 2.0 −0.000 0.028 0.00 2.0 0.00 2.0 2.0

M 0 1 0.49 −75 0.10 0.50 11.0 0.980 0.250 2.80 8.0 4.00 12.0 12.0

N 0 1 0.49 −150 0.09 0.38 17.0 1.400 0.280 2.90 14.0 4.30 19.0 19.0

O 0 1 0.49 −300 0.04 0.51 31.0 3.400 0.330 8.20 23.0 12.00 35.0 35.0

P 0 10 0.49 −30 0.02 0.00 2.0 −0.000 0.027 0.00 2.0 0.00 2.0 2.0

Q 0 10 0.49 −75 0.07 0.00 2.0 −0.000 0.008 0.00 2.0 0.00 2.0 2.0

R 0 10 0.49 −300 0.28 0.00 2.1 −0.000 0.001 0.00 2.1 0.00 2.1 2.1

S 0 10 0.49 −750 0.22 0.01 3.9 −0.000 0.010 0.04 3.9 0.04 4.0 3.9

T 0 10 0.49 −1500 0.19 0.02 6.6 0.008 0.003 0.10 7.6 0.12 6.6 6.6

U 0 10 0.49 −3000 0.08 0.01 16.0 0.900 0.021 -0.11 16.0 0.86 17.0 19.0

V 0 100 0.49 −300 0.00 0.00 2.1 −0.000 0.002 0.00 2.1 0.00 2.1 2.1

W 0 100 0.49 −750 0.01 0.00 2.1 −0.000 0.000 0.00 2.1 0.00 2.1 2.1

X 0 100 0.49 −1500 0.01 0.00 2.1 −0.000 0.000 0.00 2.1 0.00 2.1 2.1

Y 0 100 0.49 −3000 0.02 0.00 2.5 −0.000 0.000 0.00 2.3 0.00 2.5 2.5

Z 0 100 0.49 −7500 0.02 0.00 4.3 0.000 0.000 0.01 3.4 0.01 4.3 4.3

Å 0 100 0.49 −15000 0.01 0.00 13.0 0.000 0.000 0.01 9.8 0.00 13.0 13.0

listed, but are still included in the calculation of the393

total394

gain = WM +WK +Wα +WP (9)395

and396

loss = ϵM + ϵK + ĖM + ĖK. (10)397

Both the total gain and the total loss balance each other398

nearly perfectly.399

Interestingly, the ratio ϵK/ϵM, which is known to scale400

with the microphysical magnetic Prandtl number in di-401

rect numerical simulations of forced turbulence (Bran-402

denburg 2014), varies widely in the present mean-field403

calculations. It is always less than unity, and often much404

less than unity. On the other hand, not much is known405

about the scaling of this dissipation ratio for MRI-driven406

turbulence. In the old simulations of Brandenburg et al.407

(1995), this ratio was found to be even slightly larger408

than unity. Given that we present only a coarse cov-409

erage of a fairly large parameter space in the Rädler410

diagram, it is possible that there are some relationships411

that cannot presently be discerned.412

3.3. Magnetic field structures413

It is instructive to inspect the magnetic field struc-414

tures of individual snapshots. This is shown in Figure 7,415

where we present visualizations of field lines in the xz416

plane together with a color scale representation of By417

for Runs C–H. In our two-dimensional case, field lines418

are shown as contour of Ay. Runs C and D have a419

predominantly vertical dependence, which was already420

indicated by the dominance of EZ
M over EX

M in Figure 6.421

As we have seen before, the MRI is operating in Run C,422

and this causes some residual x dependence in the field,423

as manifested by the wavy pattern.424

Run F is the complete opposite of Run D, because now425

there is only a pure x dependence. Again, this was also426

already indicated in Figure 6 through the dominance of427
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Figure 7. Visualizations of field lines of (Bx, Bz) in the xz plane on top of a color scale representation of By for Runs C–H,
where blue (red) shades refer to negative (positive) values.

EX
M over EZ

M. This dramatic difference is explained by428

the value of Cα = 1, which is now large enough for an429

α2 dynamo with x extent to be excited.430

For negative shear, on the other hand, Runs C and E431

also show a change from a predominantly z dependent432

field for small values of Cα (Run C) to a predominantly433

x dependent field for large values of Cα (Run E). How-434

ever, unlike the fratricidal dynamo for positive shear,435

where EZ
M is completely killed, it is here only partially436

suppressed; Figure 6. We could therefore call such a dy-437

namo a narcissistic one. The dominant x dependence of438

the magnetic field is also evident from Figure 7.439

Runs E and G show predominantly small-scale struc-440

tures. There is no strong difference between the periodic441

and nonperiodic runs, except that the field lines are now442

purely vertical on the boundaries. It is these small-scale443

structures that are responsible for the enhanced dissi-444

pation and ultimately for the decreased efficiency of the445

dynamo process in the presence of the MRI.446

Also Run H also has small-scale structures, but those447

are not related to the MRI, which is absent in this run448

with positive shear. Here, the existence of small-scale449

structures is probably related to presence of boundaries450

in the z direction. They lower the excitation conditions451

for dynamo action with magnetic field dependence in452

the z direction, but there could also be other reasons for453

the existence of small-scale structures in this case.454

3.4. Simulations with vertical boundary conditions455
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Figure 8. Mean magnetic field evolution in a zt diagram
for simulations with vertical field boundary conditions in the
z direction for Runs I and J with CΩ = −150 (upper panel)
and CΩ = +150 (lower panel), respectively, using Cα = 0.2.

Next, we study the mean magnetic field evolution for456

simulations with vertical field boundary conditions in457

the z direction. The resulting zt diagrams are shown458

in Figure 8 for Runs I and J with CΩ = −150 and459

+150, respectively, using Cα = 1. Note that during460

the early kinematic phase, there is clear evidence for461

dynamo waves migrating in the negative (positive) z di-462

rection for negative (positive) values of CΩ.463

Comparing Runs F and G in Table 1, they have the464

same parameters, but Run G has vertical field boundary465

conditions. We see that WK is much larger in Run G466

than in Run F. Also WL is significantly larger in Run G,467

but the difference is here not quite as large. This is468

presumably caused by the existence of small-scale struc-469

tures in Run G, while Run F has essentially only a one-470

dimensional field structure at late times.471

3.5. Transition from Ω effect to MRI472

When CΩ is small enough, the turbulent magnetic dif-473

fusivity may be too large for the MRI to be excited,474

as the magnetic diffusion rate might exceed the typical475

growth rate of the instability, which is of the order of Ω.476

This idea assumes that the magnetic field is held fixed,477

but this is not true when the magnetic field is still being478

amplified by dynamo action and saturation by the large-479

scale Lorentz force has not yet been achieved. Therefore,480

since the magnetic field might still be growing, it would481

Figure 9. Dependence of EM/Eeq
M on CΩ for Beq = 1 (black

dotted line), 0.1 (blue dashed line), and 0.01 (red solid line)
using Cα = 0.49 in all cases. The black solid line denotes
EM/Eeq

M = 0.18 |CΩ| and the filled circles on this line denote
the approximate values where EM departs from the linearly
increasing trend with |CΩ|. The inset shows the dependence
of Ccrit

Ω on Beq.

not be surprising if the MRI occurred even for small482

values of CΩ, corresponding to larger magnetic diffusion483

rates.484

To facilitate dynamo saturation at a lower magnetic485

field strength, and therefore a regime with CΩ < 0 with-486

out MRI, we now invoke α quenching with finite values487

of Beq. (The case without α quenching corresponds to488

Beq → ∞.) We have performed numerical experiments489

for different values of Beq and CΩ. It turns out that for490

a fixed value of Beq, there is a critical value of CΩ above491

which the MRI commences. This is shown in Figure 9,492

where we plot the mean magnetic energy density ver-493

sus −CΩ (for CΩ < 0) and a fixed value of Cα = 0.49.494

We see that EM increases approximately linearly with495

|CΩ| and has the same value when normalized by the496

respective value of Eeq
M . Because the normalized values497

EM/Eeq
M are the same for different values of |CΩ| and498

different values of EM, this saturation dependence is a499

consequence of α quenching. Above a certain value of500

|CΩ|, however, the increasing trend stops and EM begins501

to decline with increasing values of |CΩ|. We associate502

this with the onset of the MRI.503

The MRI onset occurs for smaller values of |CΩ| when504

Beq is large. This is understandable, because for large505

values of Beq, α quenching commences only for stronger506

magnetic fields. Therefore, magnetic field saturation can507

be accomplished by the MRI before α quenching would508

be able to act. From the inset of Figure 9, we find509

quantitatively510

Ccrit
Ω ≈ 30B−1

eq . (11)511
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Thus, although CΩ < 0, the standard Ω effect is ex-512

pected to operate in the range513

2/Cα <∼ |CΩ| <∼ Ccrit
Ω , (12)514

and the MRI is only possible for values of |CΩ| larger515

than Ccrit
Ω .516

3.6. Comparison with earlier work517

Let us now discuss whether the MRI might have been518

excited in previously published work. Hydromagnetic519

models with α and Λ effects were considered by Bran-520

denburg et al. (1992) using spherical geometry. The sign521

of CΩ was determined by the sign of the Λ effect. Their522

CΩ is defined based on the stellar radius R and can523

therefore not directly be compared with the CΩ used in524

the present work. Also, given that the differential rota-525

tion emerges as a result of the Λ effect and is already526

affected by the magnetic field, their CΩ is an output527

parameter.528

In their Run T5 of model A−, they found CΩ = −474,529

while for their Run T7 of model A+, they found CΩ =530

+939... + 1010. The magnetic field in this model was531

oscillatory, which explains the existence of a range of532

CΩ.533

To address the question whether the MRI operated534

in their model A−, we can look at the resulting mag-535

netic field strengths and compare them with model A+.536

They specified the decadic logarithms and found a mag-537

netic energy of EM = 104.03 for their model A− and538

EM = 103.77...3.90 for their model A+. If the MRI was op-539

erational, we might have expected that EM would be sup-540

pressed in their model A− relative to their model A+,541

but the opposite is the case. The fact that |CΩ| was542

smaller in their Run T5 compared to Run T7 makes543

the difference even larger, because a smaller |CΩ| should544

have resulted in an even weaker magnetic field.545

To decide about the excitation of the MRI, we can546

also estimate their effective value of vAk1/Ω. Using547

vA ≈
√

2EM/ρ0 ≈ 150, k1 = 2π/0.3R ≈ 20, Ω =548

Ta1/2ηT/2R
2 ≈ 2700, where Ta = 3× 107 is the turbu-549

lent Taylor number, and PrM = 1, we find vAk1/Ω ≈ 1,550

so the MRI might well have been excited. Similar con-551

clusions about the lack of a suppression for CΩ < 0 can552

also be drawn from the models of Brandenburg et al.553

(1991) when Ta ≥ 106, but for Ta ≤ 104, they did find554

a suppression of EM for CΩ < 0. A similar mismatch555

was later also noticed for three-dimensional turbulent556

rotating convection with shear (Käpylä et al. 2013).557

3.7. Estimates for the Sun558

For the MRI to be excited, the Alfvén frequency,559

ωA = vAk, must not exceed the rotational shear fre-560

quency,
√
2qΩ, where q = −∂ lnΩ/∂ lnϖ is the local561

Figure 10. Depth dependence of the Alfvén frequency
for Brms = 300G (solid black line) using the mixing length
model of Spruit (1974). Also shown are the values for Brms =
1000G and Brms = 100G (upper and lower dashed lines), as
well as urmsk/3 (blue) and 3× 1012 cm s−1 k2 (red line).

nondimensional shear parameter. For the solar NSSL,562

we have q = 1 (Barekat et al. 2014). Here, we estimate563

k ≈ 1/ℓ, where ℓ is the local mixing length, which is also564

approximately equal to the depth, R− r, where R is the565

solar radius and r is the local radius. In Figure 10, we566

plot the depth dependence of ωA on R − r, where the567

radial dependence of ℓ and ρ has been obtained from568

the solar mixing length model of Spruit (1974). Here,569

we also present two estimates of the turbulent magnetic570

diffusion rate ηTk
2, where we assume either a constant571

ηT (3× 1012 cm2 s−1) or ηT = urms/3k (Sur et al. 2008).572

Both rates show a similar dependence on depth. The573

value ηT = 3 × 1012 cm2 s−1 is motivated by a similar574

value for the turbulent heat diffusivity; see Krivodubskii575

(1984).576

Using for the mean field of the Sun Brms = 300G, we577

have vA = 50m s−1 and ωA = 7×10−6 s−1 at a depth of578

7Mm where ρ ≈ 3 × 10−4 g cm−3, and vA = 8ms−1
579

and ωA = 2 × 10−7 s−1 at a depth of 40Mm where580

ρ ≈ 10−2 g cm−3. These values bracket the value of Ω,581

so the MRI might be viable somewhere in this range.582

However, different estimates for the turbulent diffusion583

rate urmsk/3 (shown in blue) and 3 × 1012 cm2 s−1 k2584

(shown in red) lie tightly at ωA or even exceed it at585

nearly all depths, making the MRI implausible to ex-586

cite. Furthermore, if we estimated k = 2π/ℓ instead587

of just 1/ℓ, ωA would attain much higher values and it588

would be completely impossible to have the MRI being589

excited.590

4. CONCLUSIONS591

The MRI can only work with negative shear, i.e., when592

CΩ < 0. Our mean-field models have shown that in that593

case, the magnetic energy is smaller than for CΩ > 0, al-594

though all other conditions are comparable for positive595
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and negative shear. This indicates that the MRI does596

operate in those simulations with CΩ < 0. Our con-597

clusions regarding earlier findings in spherical domains598

remain inconclusive. As discussed in Sect. 3.6, the mod-599

els of Brandenburg et al. (1991, 1992), where the MRI is600

potentially excited, show different results for a slow and601

rapid rotation. Therefore, it still needs to be examined602

whether the MRI was indeed operating in those early603

investigations.604

It is possible that models with positive and negative605

values of CΩ are not so straightforwardly comparable as606

in our present Cartesian geometry. Looking at Rädler607

diagrams for dynamos in spheres (see also Figure 1 of608

Brandenburg et al. 1989), we see significant differences609

in the type of solutions that are being excited.610

Our work has also shown that the MRI can work611

even for small shear parameters when the magnetic field612

strength is limited just by the large-scale Lorentz force.613

However, mechanisms such as α quenching related to the614

backreaction of the Lorentz force from the small-scale615

field prevent the MRI from occurring for small shear616

parameters. This α quenching limits the magnetic field617

strength to values below the critical one where the mag-618

netic diffusion rate exceeds the growth rate of the MRI.619

Finally, we discussed whether or not the MRI could play620

a role in the Sun. We argued that this is likely not the621

case, because the turbulent magnetic diffusivity appears622

to be too large. Note that the turbulent magnetic dif-623

fusivity was ignored in the work of Vasil et al. (2024).624

Our estimates are somewhat uncertain because they de-625

pend on the magnetic field strength and the value of626

the wavenumber. If we assumed it were 2π/ℓ, the MRI627

would definitely be ruled out, while for k = 1/ℓ, it would628

be right at the limit for Brms = 300G. This value of the629

magnetic field strength is also what was considered by630

Brandenburg (2005b), and it is compatible with what631

was assumed by Vasil et al. (2024), who discussed val-632

ues in the range between 100G and 1000G.633
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1990, Sol. Phys., 128, 243, doi: 10.1007/BF00154160690

https://github.com/pencil-code
http://doi.org/10.5281/zenodo.15258044
http://doi.org/10.1093/mnras/281.2.L21
http://doi.org/10.1086/170270
http://doi.org/10.1086/172022
http://doi.org/10.1093/mnras/266.4.769
http://doi.org/10.1103/RevModPhys.70.1
http://doi.org/10.1051/0004-6361/201424839
http://doi.org/10.1002/asna.200510414
http://doi.org/10.1086/429584
http://doi.org/10.1088/0004-637X/791/1/12
http://doi.org/10.1007/s11214-023-00999-3
http://doi.org/10.1017/S0022112096001322
http://doi.org/10.1080/03091929108229043
http://doi.org/10.1086/175831
http://doi.org/10.1086/527373
http://doi.org/10.1080/03091920290032974
http://doi.org/10.1016/j.physrep.2005.06.005
http://doi.org/10.1007/BF00154160


12

Bushby, P. J., Käpylä, P. J., Masada, Y., et al. 2018, A&A,691

612, A97, doi: 10.1051/0004-6361/201732066692

Cattaneo, F. 1999, ApJL, 515, L39, doi: 10.1086/311962693

Chan, K. L., Sofia, S., & Mayr, H. G. 1987, in The Internal694

Solar Angular Velocity, ed. B. R. Durney & S. Sofia, Vol.695

137, 347, doi: 10.1007/978-94-009-3903-5 35696
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