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Dynamical quenching with non-local α and downward pumping
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4Department of Physics, Gustaf Hällströmin katu 2a (PO Box 64), FI-00014 University of Helsinki, Finland
5 ReSoLVE Centre of Excellence, Department of Information and Computer Science, Aalto University, PO Box 15400,

FI-00076 Aalto, Finland

December 3, 2014, Revision: 1.51

Key words magnetic fields – magnetohydrodynamics (MHD)

In light of new results, the one-dimensional mean-field dynamo model of Brandenburg & Käpylä (2007) with dynamical
quenching and a nonlocal Babcock–Leighton α effect is re-examined for the solar dynamo. We extend the one-dimensional
model to include the effects of turbulent downward pumping (Kitchatinov & Olemskoy 2011), and to combine dynamical
quenching with shear. We use both the conventional dynamical quenching model of Kleeorin & Ruzmaikin (1982) and the
alternate one of Hubbard & Brandenburg (2011), and confirm that with varying levels of non-locality in the α effect, and
possibly shear as well, the saturation field strength can be independent of the magnetic Reynolds number.
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1 Introduction

The generation of large-scale magnetic fields is usually ex-

plained in terms of mean-field theory, in which one con-

siders solutions of the averaged induction equation (Parker

1979; Krause & Rädler 1980). In this theory, the evolution

of the mean magnetic field is governed by turbulent trans-

port coefficients such as the α effect and the turbulent mag-

netic diffusivity ηt. As long as the magnetic field is small

compared with the equipartition field strength Beq, and if

there is also helicity in the system, one expects the param-

eter α, which drives dynamo action, to be of the order of

the rms velocity of the turbulence, and ηt to be of the order

of the rms velocity times the mixing or correlation length

of the turbulence (Moffatt 1978). If this is indeed true, the

relevant time scale of the problem should be the dynamical

time scale, rather than the microscopic diffusion time which

would be longer than the dynamical one by a factor that is

equal to the magnetic Reynolds number Rm, which in turn

is very large in many systems of astrophysical relevance;

106 to 109 in the Solar convection zones.

Early attempts to determine α and ηt from simulations

have suggested that this may not be so simple, and that the

saturated field strength might decrease rapidly with increas-

ing Rm in a phenomenon called “catastrophic quenching”

(Cattaneo & Vainshtein 1991; Cattaneo & Hughes 1996).

The reason for this is that magnetic helicity, which measures

the twist of magnetic flux bundles, obeys a conservation

equation (Gruzinov & Diamond 1994). So, as the physics

of the α effect describes the twisting of the large-scale mag-

netic field by helical fluid motions, it is constrained by the
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magnetic helicity equation in a fashion which resists fur-

ther twisting of the field. This is possible because magnetic

helicity is signed: by producing magnetic helicity at small

scale of opposite sign, magnetic helicity can remain con-

stant even while dynamo action creates helical large scale

fields.

In the mean-field formalism, this can be described by an

α effect that depends not only on background fluid motions,

but also on the helicity of the small-scale magnetic field.

This provides an extra evolution equation for the magnetic

α effect which describes the production of magnetic helic-

ity locally where strong mean field twisting occurs. This

approach goes back to the early work of Kleeorin & Ruz-

maikin (1982), and is now usually referred to as the dynam-

ical quenching formalism. This formalism has been found

to describe many properties of direct numerical simulations

of turbulent dynamos (Field & Blackman 2002; Blackman

& Brandenburg 2002; Subramanian 2002).

This formalism is quite different from “algebraic” α
quenching that is often invoked to describe saturation of the

magnetic field by reducing α locally, depending on the am-

plitude of the mean field at that position. The dynamical

quenching formalism can even produce an α effect where

there was none to begin with, for example in the turbulent

decay of a helical large-scale magnetic field (Yousef et al.

2003; Kemel et al. 2011; Blackman & Subramanian 2013).

This can also occur when a mean magnetic field is produced

by the shear–current effect (Rogachevskii & Kleeorin 2003,

2004). While the shear–current effect is quite different from

the α effect of dynamo theory, it produces a helical mean

field, and therefore must be accompanied by the generation

of small-scale magnetic helicity so that no net magnetic he-
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licity is produced. This has been demonstrated within the

dynamical quenching formalism (Brandenburg & Subrama-

nian 2005), where a magnetic α effect was produced, even

though there is no kinetic α effect. Further examples are the

so-called interface dynamos (Parker 1993), where shear op-

erates at the bottom of the solar convection zone, and the

kinetic α effect operates at its top. Again, a magnetic α is

produced at locations where strong twisting of the mean

field occurs, regardless of the location of the kinetic α ef-

fect, as was demonstrated by simulations in spherical ge-

ometry (Chatterjee et al. 2010).

This situation is similar to models with a Babcock–

Leighton α effect which acts at the surface based on mag-

netic fields at the bottom of the convection zone (e.g. Char-

bonneau 2010). This effect is therefore highly non-local.

Dynamical quenching in such a model was considered by

Brandenburg & Käpylä (2007; hereafter BK07). There,

dynamical quenching was found to lead to catastrophic

quenching, i.e., the saturation field strength was found to de-

crease like R−1
m . Subsequent work of Kitchatinov & Olem-

skoy (2011, 2012) has now shown that, using a more realis-

tic model of the solar dynamo, catastrophic quenching may

be alleviated in the presence of strong downward pumping.

An alternate new line of research has shown that the “stan-

dard” set of dynamical quenching equations can fail in the

presence of shear (Hubbard & Brandenburg 2011). The pur-

pose of the present paper is to examine both recent results

in the context of the idealized model of BK07, determin-

ing both whether the results of KO11 depend on a more

complicated geometry and how more recent formulations of

dynamical alpha quenching behave in the presence of non-

local phenomena.

2 Dynamical α quenching and non-locality

In mean field theory we decompose the fields into mean

(overbar) and fluctuating (lower case) quantities, so for ex-

ample the magnetic field can be written as

B = B + b, (1)

where b = 0. Defining the mean turbulent electromotive

force

E ≡ u× b, (2)

we can write the mean field induction equation (Parker

1979; Krause & Rädler 1980)

∂B

∂t
= ∇×

(

U ×B + E − ηµ0J
)

. (3)

However, if there is helicity in the system, there is also the

occurrence of a magnetic α effect, αM, which characterizes

the production of internal twist in the system and is gov-

erned by

∂αM

∂t
+∇ ·F = −2ηtk

2
f

(

E ·B

B2
eq

+
αM

Rm

)

, (4)

as described in (Brandenburg & Subramanian 2005). F is

the mean flux of small scale magnetic helicity.

In this paper, E is assumed to have contributions from

the kinetic and magnetic α effects, αK and αM, respec-

tively, the turbulent magnetic diffusivity ηt, and the turbu-

lent pumping or γ effect, i.e., we write

E = α̂K ◦B + αMB + γ ×B − ηtJ . (5)

We are studying the effect of a non-local Babcock Leighton

type α, which generates an E that is restricted to the surface

layers of the Sun, but depends only on the mean magnetic

field deep within the convective zone. Therefore, we treat

the kinetic α effect as nonlocal integral kernel, α̂K, and

α̂K ◦B =

∫ z2

z1

α̂K(z, z
′)B(z′, t) dz′ (6)

denotes a convolution, which is here restricted to be only in

z.

For simplicity, we use a Cartesian domain, with the xy
plane corresponding to surfaces of constant radius in the

Sun, and z corresponding to the radial direction. We have

restricted ourselves to xy averages in the Cartesian domain,

so B = B(z, t) depends only on z and t, and we assume

that the turbulent pumping parameter γ = γz only acts in

the vertical direction. Note that the magnetic helicity equa-

tion is unaffected by the γ effect – just like the large-scale

velocity term, U ×B, it does not directly affect the evolu-

tion of αM.

The possibility of nonlocal α and ηt effects has been

inferred also from simulations of magneto-rotational turbu-

lence in accretion discs (Brandenburg & Sokoloff 2002) and

for turbulence (Brandenburg et al. 2008). In principle, ηt
and γ should of course also be nonlocal, but this will here

be neglected. Following BK07, we restrict ourselves to a

simple expression of the form

α̂K(z, z
′) = α0 gout(z) gin(z

′), (7)

where α0 is a coefficient, to be specified below, and

gout(z) =
1
2

[

1 + erf

(

z − z2
d

)]

, (8)

gin(z
′) = 1

2

[

1− erf

(

z′ − z1
d

)]

(9)

are simple profile functions representing the peak of the

source function near z = z2 with a sensitivity for fields lo-

cated near z = z1. For the following we choose −z1 = z2 =
2.5/k1 and d = 0.05/k1 in the domain −π < k1z < π; see

Fig. 1. Here, k1 is the smallest wavenumber in the compu-

tational domain and is used as our inverse unit length.

In most of the published literature on dynamical quench-

ing, the magnetic helicity flux has no contribution from a

term E × A, which enters with opposite signs in the evo-

lution equations for the magnetic helicity flux from small-

scale and large-scale fields. However, recent work (Hub-

bard & Brandenburg 2011,2012) now reveals that this is not

permissible, and including it tends to alleviate catastrophic

quenching. Nonetheless, for comparison with the published

literature, we solve Eqs. (3) and (4) first for the case F = 0.

We use an implicit scheme for αM, as described in BK07.
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Fig. 1 Contributions gin(z) and gout(z) entering the nonlocal α

effect defined in Eq. (7). The dotted lines indicate the positions of

z1 and z2.

Fig. 2 Dependence of the saturation field strength on Cγ for

Rm = 104.

We have considered a model using linear shear of the form

U(z) = (0, S(z)x, 0). In this paper, γ and ηt are assumed

constant. The strength of shear, α, and γ effects is quantified

by the non-dimensional numbers

CS =
S

ηtk21
, Cα =

α0

ηtk1
, Cγ =

γ

ηtk1
. (10)

In the following we use CS = 100, Cα = 0.1, and

kf/k1 = 5, while Cγ will be varied. In many cases an ex-

plicit treatment of the αM equation suffices (e.g. Blackman

& Brandenburg 2002), but in the present case an explicit

solution algorithm was found to be unstable; see BK07 for

details.

2.1 Homogeneous shear

While the Sun has a strong shear layer at the base of the

convective zone, we first consider the case of homogeneous

shear (CS not depending on z). In this case, it turns out

that the inclusion of downward pumping in the model of

BK07 makes the dynamo stronger, as can be seen in Fig. 2,

where we show that B
2
∝ γ2. The reason for this is that

Fig. 3 Vertical dependence of B
2

, J · B, and αM for a model

with homogeneous shear, all normalized by their local extrema, for

different values of Cγ .

most of the field is generated in the middle of the domain,

while most of the quenching via αM occurs near the top

of the layer around z = z2; see Fig. 3. Nevertheless, this

model still experiences catastrophic quenching; see Fig. 4.

These results are quite similar to those obtained for local α
profiles (Brandenburg & Subramanian 2005). We note that

for Rm > 104 it is important to perform the calculations

using double precision arithmetics.

A somewhat surprising property of the present solutions

is the fact that J · B is still negative everywhere; see the

middle panel of Fig. 3. This is mainly a consequence of the

nonlocal α effect; for a local α effect, and certainly in the

absence of shear, J ·B would always be positive for posi-

tive α. Nevertheless, αM is negative everywhere, the oppo-

site sign as the kinetic α effect, so there is no possibility of

having anti-quenching anywhere in the domain.

2.2 Shear layer

Next, inspired by the solar tachocline, we consider a model

where shear is confined to a narrow layer at the bottom of

the domain. In that case we replace S by S(z) = S0gin, i.e.,

the shear layer coincides with the profile with which the α
kernel operates on the magnetic field. It turns out that in that

case the magnetic field becomes oscillatory. This means that
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728 A. Brandenburg, A. Hubbard, & P. J. Käpylä: Dynamical quenching with non-local α and downward pumping

Fig. 4 Dependence of the saturation field strength on Rm for

models with homogeneous shear, with and without downward

pumping or γ effect.

Fig. 5 Saturation behavior of a dynamo with a shear profile that

is identical to that of gin, which is localized only to the lower layer.

αM can now change sign and thereby offset the quenching

such that the saturation level becomes independent of the

magnetic field strength. This is shown in Fig. 5, where we

plot 〈B
2
〉 versus time for two values of Rm. Both the lin-

ear growth rate and the initial saturation field strength are

now found to be independent of Rm. (For smaller values

of Rm the linear growth rate would become progressively

smaller, because the effective dynamo number would de-

crease.) For Rm = 103 the model saturates at a fixed level

for all times, but in models with larger values of Rm (104

or 105) the field achieves only temporary saturation before

it grows beyond any limit. This is in agreement with earlier

models of Kitchatinov & Olemskoy (2011) and other dy-

namical quenching models, for example in models of Bran-

denburg & Subramanian (2005), in which an αM is driven

by a magnetic helicity flux of Vishniac–Cho type (Vishniac

& Cho 2001).

Fig. 6 Dynamo behavior at early times with homogeneous shear

using the alternate quenching formulation. CS = −100, Cα =
−0.1, Cγ = −1, Rm = 105. Note the difference in the scale

of the x-axes, the dynamo waves are too numerous to plot fully.

Further, the energy in the top left panel is a running mean.

3 Alternate quenching

Quite different results are obtained when a different formu-

lation of dynamical α quenching is used. Using the results

in Hubbard & Brandenburg (2011,2012), we can replace

Eq. (4) with

∂h/∂t = −2η
(

J ·B + αMB2
eq/ηt

)

(11)

αM = ηtk
2
f

(

h−A ·B
)

/B2
eq. (12)

This formulation gives better results in the geometries stud-

ied in Hubbard & Brandenburg (2012), namely shearing-

periodic with a homogeneous α effect. This approach has

now also been applied to solar-like models in spherical ge-

ometry (Pipin et al. 2013).

In this case, it is important to consider how an oscilla-

tory dynamo functions. First the x-component of the field at

the bottom, Bbot
x , is sheared into a y-directed field Bbot

y

with sgnBbot
y = sgnSBbot

x . In the assumed high-shear

regime (|CS | ≫ Cα, Cγ), this y directed toroidal field dom-

inates the energetics. From this toroidal field the non-local

α-effect generates an x-directed poloidal field Btop
x at the

top, with sgnBtop
x = sgn (−α′SBbot

x ), where the prime

denotes a z derivative due to taking the curl in Eq. (3). If

sgnBtop
x 6= sgnBbot

x , then when the field is transported

downwards (via pumping through the gamma effect, or dif-

fusion), it will counter the original field, resulting in dy-

namo waves, as seen in Fig. 6. If the signs are the same,

there is only amplification, with no back-reaction mecha-

nism available in the formalism we consider, although alge-

braic quenching or similar must eventually play a significant

role. In this section we therefore only present results for the

oscillatory case.

This nonlocal αΩ dynamo does not have the same be-

havior as a uniform one. Perhaps most significantly, the en-
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Fig. 7 Dynamo behavior at intermediate times with homoge-

neous shear for a dynamo with CS = −100, Cα = −0.1,

Cγ = −1, Rm = 500. The alternate quenching formulation was

used. Here the energy is not a running mean.

Fig. 8 Alternate quenching dynamo behaviors for three values

of Rm, other parameters S = −100, α = −0.1, γ = −1.

Black/solid: Rm = 500; red/dashed: Rm = 50; blue/dash-dotted:

Rm = 104 (not included in top panel).

ergy in the magnetic fields shows strong fluctuations as the

magnetic field oscillates. Accordingly, for most figures in

this section, our energies are running means. The exception

is Fig. 7, where we show a time-magnification of the dy-

namo, and strong time variation is visible.

In Fig. 8 we examine the dependency of the system on

Rm. In the top panel, we see that the time dependence is

similar for Rm = 50, 500, although it appears that Rm =
50 is not yet in the asymptotically high Rm regime. Note

Fig. 9 Alternate quenching dynamo behavior at intermediate

times with inhomogeneous shear. CS = −100, Cα = −0.2,

Cγ = −1, Rm = 500. Notably, here the shear is not homoge-

neous, instead it has the same spatial variation as gin. The dynamo

control parameters had to be changed (Cα from −0.1 to −0.2) to

allow dynamo growth. The dips in the temporal log-linear cuts are

sign-changes.

that the time axis is scaled to the resistive time. In the mid-

dle panel, we show the early (kinematic) behavior, which is

identical for all three values of Rm = 50, 500, 104, with a

non-scaled time axis. In the bottom panel, we see the early

non-linear evolution, where the results for Rm = 500, 104

are identical, but again it appears that Rm = 50 is too low

for fully asymptotic behavior. Note that the time of entrance

into the linear growth regime is different for the three cases

because of the scaling of t. Intriguingly, the slow-saturation

phase shown is similar to that predicted for closed heli-

cal systems. We see no evidence for a declining final field

strength with Rm.

As a final comment in this section, in Fig. 9 we include a

run with not merely a non-local α effect, but also non-local

shear, to model a Babcock-Leighton α effect at the surface,

and the strong shear localized in the solar tachocline. The

dynamo is overall similar to the case with homogeneous

shear but, predictably, far less strongly excited, necessitat-

ing an increased magnitude of Cα = −0.2
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4 Conclusions

The present work has demonstrated that, within the frame-

work of the dynamical quenching model, a nonlocal α effect

of Babcock-Leighton type combined with downward pump-

ing can alleviate catastrophic quenching only when the

shear layer is separated from the layer where the Babcock-

Leighton α acts. Downward pumping can lead to a strong

enhancement of the dynamo even in models where shear is

uniform. While this can compensate for some of the field

reduction suffered from large values of Rm, it nevertheless

does not change the R−1
m scaling.

The model of Kitchatinov & Olemskoy (2011) con-

tains an important feature that is found here only in time-

dependent cases, namely the sign reversal of αM in some

places, which leads to catastrophic anti-quenching (or am-

plification). Similar sign reversals of the local value of αM

have been seen in some earlier models with a local α effect

(Guerrero et al. 2010; Chatterjee et al. 2011), but it needs to

be seen whether this behavior is physically realistic and still

compatible with the original equations.

Further, it is clearly only a simplification to neglect the

flux term in Eq. (4). Even though the domain may be closed,

we must always expect there to be internal magnetic helic-

ity fluxes resulting from the inhomogeneity of the model.

Magnetic helicity fluxes between local extrema in the small-

scale magnetic helicity density and across the equator have

been detected in direct numerical simulations (Mitra et

al. 2010; Hubbard & Brandenburg 2010; Del Sordo et al.

2013). Such fluxes might well be sufficient for alleviating

catastrophic quenching without the need for invoking the

non-locality of α.

On the other hand, an improved integration of shear with

dynamical quenching can avoid catastrophic α-quenching,

but only functions and generates an oscillatory dynamo

when the signs of the α effect and the shear are the same.

When the signs are different, dynamical quenching predicts

no feedback, so the field grows without bound (although

some form of geometric α quenching must eventually con-

trol the system).
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